
MPJ Express: An Implementation of MPI in
Java

Linux/UNIX/Mac User Guide
18th July 2014

Document Revision Track

Version Updates By

1.0 Initial version document Aamir Shafi

1.1 A new device ‘hybdev’ is added for executing parallel Java
applications exploiting hybrid parallelism.

Ansar Javed, Mohsan
Jameel, Aamir Shafi

1.2 A new device ‘native’ is added for executing parallel Java
applications on top of a native MPI library.

Bibrak Qamar, Mohsan
Jameel, Aamir Shafi

1.3 Runtime updated and support for running Java
applications on non-shared file system added. New scripts
for daemons are also added.

Aleem Akhtar, Aamir
Shafi, Mohsan Jameel

1.4 Improved collective primitives are added in MPJ Express.
Some minor bugs are fixed

Aleem Akhtar, Aamir
Shafi, Mohsan Jameel

Table of Contents

1 Introduction..5

1.1 Configurations...5

1.1.1 Multicore configuration ..6

1.1.2 Cluster configuration ..6

2 Getting Started with MPJ Express...8

2.1 Pre-requisites ... 8

2.2 Installing MPJ Express ..9

2.3 Compiling User Applications ..9

2.4 Running MPJ Express in the Multi-core Configuration ..10

2.5 Running MPJ Express in the Cluster Configuration..10

2.5.1 Cluster Configuration with niodev...10

2.5.2 Cluster Configuration with mxdev ...11

2.5.3 Cluster Configuration with hybdev ..12

2.5.4 Cluster Configuration with native device (using a native MPI library)12

2.6 Advanced Options to mpjrun.sh ..14

3 MPJ Express Debugging..15

3.1 The mpjrun Script..15

3.2 Core Library...15

3.3 MPJ Express Daemons (Cluster configuration only) ...15

4 Known Issues and Limitations ..16

5 Contact and Support ..18

6 Appendices...19

Appendix A: Running MPJ Express on non-shared file system...19

Appendix B: Changing protocol limit switch...20

Appendix C: MPJ Express Testsuite...20

Compiling source code and Testsuite ...20

Running Testsuite..21

Appendix D: Useful scripts for MPJ Daemons...21

Appendix E: Switching to Old Collectives..23

Table of Figures

Figure 1: MPJ Express configurations ...6

Figure 2: MPJ Express Cluster Configuration Targets the Distributed Memory Platforms Including Clusters
and Network of Computers .. 7

Figure 3: MPJ Express Hybrid Configuration targeting cluster of multicore machines8

1 Introduction

MPJ Express is a reference implementation of the mpiJava 1.2 API, which is an MPI-like API
for Java defined by the Java Grande forum. The mpiJava 1.2 API is the Java equivalent of the
MPI 1.1 specification document (http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html).

This release of the MPJ Express software contains the core library and the runtime infrastructure.
The software also contains a comprehensive test suite that is meant to test the functionality of
various communication functions.

MPJ Express is a message passing library that can be used by application developers to execute
their parallel Java applications on compute clusters or network of computers. Compute clusters is
a popular parallel platform, which is extensively used by the High Performance Computing
(HPC) community for large scale computational work. MPJ Express is essentially a middleware
that supports communication between individual processors of clusters. The programming model
followed by MPJ Express is Single Program Multiple Data (SPMD).

Although MPJ Express is designed for distributed memory machines like network of computers
or clusters, it is possible to efficiently execute parallel user applications on desktops or laptops
that contain shared memory or multicore processors.

1.1 Configurations

The MPJ Express software can be configured in two ways, as shown in Figure 1. The first
configuration—known as the multicore configuration—is used to execute MPJ Express user
programs on laptops and desktops. The second configuration—known as the cluster
configuration—is used to execute MPJ Express user programs on clusters or network of
computers. The cluster configuration relies on devices for communication. Currently there are
four communication devices for the cluster configuration:

1. Java New I/O (NIO) device known as niodev: niodev is used to execute MPJ Express
user programs on clusters using Ethernet.

2. Myrinet device known as mxdev: mxdev is used to execute MPJ Express user programs on
clusters connected by Myrinet express interconnects.

3. Hybrid device known as hybdev: hybdev is used to execute MPJ Express user programs on
clusters of multicore computers.

4. Native device known as native: native is used to execute MPJ Express user programs on
top of a native MPI library (MPICH, Open MPI or MS-MPI).

Figure 1: MPJ Express configurations

1.1.1 Multicore configuration

The multicore configuration is meant for users who plan to write and execute parallel Java
applications using MPJ Express on their desktops or laptops—typically such hardware contains
shared memory and multicore processors. In this configuration, users can write their message
passing parallel application using MPJ Express and it will be ported automatically on multicore
processors. We envisage that users can first develop applications on their laptops and desktops
using multicore configuration, and then take the same code to distributed memory platforms
including clusters. Also this configuration is preferred for teaching purposes since students can
execute message passing code on their personal laptops and desktops. It might be noted that user
applications stay the same when executing the code in multicore or cluster configuration.

Under the hood, the MPJ Express library starts a single thread to represent an MPI process. The
multicore communication device uses efficient inter-thread mechanism.

1.1.2 Cluster configuration

The cluster configuration is meant for users who plan to execute their parallel Java applications
on distributed memory platforms including clusters or network of computers.

As an example, consider a cluster or network of computers shown in Figure 2. It shows six
compute nodes connected to each other via private interconnect. The MPJ Express cluster
configuration will start one MPJ Express process per node, which communicates to each other
using message passing.

Application developers can opt to use either of the four communication devices in the cluster
configuration:

1. Java New I/O (NIO) device driver known as niodev
2. Myrinet device driver known as mxdev
3. Hybrid device driver known as hybdev
4. Native device driver known as native

The Java NIO device driver (also known as niodev) can be used to execute MPJ Express
programs on clusters or network of computers. The niodev device driver uses Ethernet-based
interconnect for message passing. On the other hand, many clusters today are equipped with
high-performance low-latency networks like Myrinet. MPJ Express also provides a
communication device for message passing using Myrinet interconnect—this device is known as
mxdev and is implemented using the Myrinet eXpress (MX) library by Myricom. These
communication drivers can be selected using command line switches.

Modern HPC clusters are mainly equipped with multicore processors (Figure 3). The hybrid
device is meant for users who plan to execute their parallel Java applications on such a cluster of
multicore machines. Hybrid device transparently uses both multicore configuration and cluster
configuration for intra-node communication and cluster configuration (NIO device only) for
inter-node communication, respectively.

Figure 2: MPJ Express Cluster Configuration Targets the Distributed Memory Platforms Including
Clusters and Network of Computers

Figure 3: MPJ Express Hybrid Configuration targeting cluster of multicore machines

The fourth device—native device—is meant for users who plan to execute their parallel Java
applications using a native MPI implementation for communication. With this device bulk of
messaging logic is offloaded to the underlying MPI library. This is attractive because MPJ
Express can exploit latest features, like support for new interconnects and efficient collective
communication algorithms, of the native MPI library.

2 Getting Started with MPJ Express

This section shows how MPJ Express programs can be executed in the multicore and cluster
configuration.

2.1 Pre-requisites

1. Java 1.6 (stable) or higher (Mandatory).

2. Apache ant 1.6.2 or higher (Optional): ant is required for compiling MPJ Express source
code.

3. Perl (Optional): MPJ Express needs Perl for compiling source code because some of the
Java code is generated from Perl templates. The build file will generate Java files from
Perl templates if it detects perl on the machine. It is a good idea to install Perl if you want
to do some development with MPJ Express.

4. A native MPI library (Optional): Native MPI library such as MPICH or Open MPI is
required for running MPJ Express in cluster configuration with native device.

5. CMake (Optional): MPJ Express needs CMake to generate Makefile that is used to build
JNI wrapper library for the native device.

2.2 Installing MPJ Express

This section outlines steps to download and install MPJ Express software.

1. Download MPJ Express and unpack it

2. Set MPJ_HOME and PATH variables

a. export MPJ_HOME=/path/to/mpj/

b. export PATH=$MPJ_HOME/bin:$PATH

These lines may be added to “.bashrc” file. However make sure that the shell in which
you are setting variables is the ‘default’ shell. For example, if your default shell is ‘bash’,
then you can set environment variables in .bashrc. If you are using ‘tcsh’ or any other
shell, then set the variables in the respective files.

3. Create a new working directory for MPJ Express programs. This document assumes that
the name of this directory is mpj-user.

4. Compile the MPJ Express library (Optional): cd $MPJ_HOME; ant

2.3 Compiling User Applications

This section shows how to compile a simple Hello World parallel Java program.

1. Write Hello World parallel Java program and save it as HelloWorld.java

2. Compile: javac -cp .:$MPJ_HOME/lib/mpj.jar HelloWorld.java

import mpi.*;

public class HelloWorld {

public static void main(String args[]) throws Exception {
 MPI.Init(args);

int me = MPI.COMM_WORLD.Rank();
 int size = MPI.COMM_WORLD.Size();
 System.out.println("Hi from <"+me+">");
 MPI.Finalize();

}
}

2.4 Running MPJ Express in the Multi-core Configuration

This section outlines steps to execute parallel Java programs in the multicore configuration.

1. Assuming the user has successfully carried out Section 2.2 and Section 2.3.

2. Running HelloWorld

Execute: mpjrun.sh -np 2 HelloWorld

3. Running test cases

a. Compile (Optional): cd $MPJ_HOME/test; ant

b. Execute: mpjrun.sh -np 2 -jar $MPJ_HOME/lib/test.jar

2.5 Running MPJ Express in the Cluster Configuration

This section outlines steps to execute parallel Java programs in the cluster configuration with
four communication device drivers including niodev, mxdev, hybdev and native.

2.5.1 Cluster Configuration with niodev

4. Assuming the user has successfully carried out Section 2.2 and Section 2.3.

5. Write a machines file stating machine name, IP addresses, or aliases of the nodes where
you wish to execute MPJ Express processes. Save this file as 'machines' in mpj-user

directory. This file is used by scripts like mpjboot, mpjhalt, mpjrun.bat and mpjrun.sh to
find out which machines to contact.

Suppose you want to run a process each on 'machine1' and 'machine2', then your
machines file would be as follows

machine1
machine2

Note that in real world, 'machine1' and 'machine2' would be fully qualified names,
IP addresses or aliases of your machine

6. Start daemons: mpjboot machines

This should work if $MPJ_HOME/bin has been successfully added to $PATH variable. This
script will SSH into each of the machine listed in machines file, and start the daemon. If

logging is enabled then each daemon produces a log file named daemon-

<machine_name>.log in $MPJ_HOME/logs directory.

7. Running HelloWorld

Execute: mpjrun.sh -np 2 -dev niodev HelloWorld

8. Running test cases (Optional)

Execute: mpjrun.sh -np 2 -dev niodev -jar $MPJ_HOME/lib/test.jar

9. Stop the daemons: mpjhalt machines

It is not required to stop daemons after every execution. Daemons are ready to launch
another job after clean exit of application.

2.5.2 Cluster Configuration with mxdev

Under the cluster configuration, the MPJ Express software also works on Myrinet based clusters.
For this purpose, MPJ Express has a communication device that runs on top of Myrinet eXpress
(MX) library. Steps for compiling and executing user applications are same as outlined in
Section 2.3 and Section 2.5.1. The following steps must be performed additionally to use MPJ
Express on Myrinet:

1. Export the MX_HOME variable. Assuming the Myrinet eXpress (MX) dirver is in /opt/mx,
the variable is exported as follows:

export MX_HOME=/opt/mx

2. Edit build.xml (in $MPJ_HOME) and change the following line:

<target name="all" depends="compile,jars,java-docs,clean" >

to

<target name="all" depends="compile,mxlib,jars,java-docs,clean" >

Note that we have added mxlib in the value of "depends" attribute. Being in $MPJ_HOME
directory, run the command "ant". You will see some funny warning messages from gcc
but things will work. The native libraries *.so and JAR files are produced in
$MPJ_HOME/lib directory.

3. Now write machines file. Basically for this, run "mx_info" command in your terminal
(assuming $MX_HOME/bin is in the $PATH variable) you'll get something like this:

MX Version: 1.1.7rc3cvs1_1_fixes
MX Build: @indus1:/opt/mx2g-1.1.7rc3 Thu May 31 11:03:00 PKT 2007
2 Myrinet boards installed.
The MX driver is configured to support up to 4 instances and 1024 nodes.
[..]
ROUTE COUNT INDEX MAC ADDRESS HOST NAME P0
----- ----------- --------- ---
0) 00:60:dd:47:ad:7c indus1:0 1,1
1) 00:60:dd:47:ad:68 indus4:0 1,1
[..]

Depending upon the machines having Myrinet, write your machines file

4. The device can be used by executing:

mpjrun.sh -np 2 -dev mxdev -Djava.library.path=$MPJ_HOME/lib HelloWorld

This command is assuming the Myrinet NICs with id 0 are used, this may be changed
by using the mpjrun switch called "-mxboardnum"

2.5.3 Cluster Configuration with hybdev

This section outlines steps to execute parallel Java programs in the hybrid configuration using
multicore and cluster configurations. Hybrid configuration depends on Multicore configuration
and Cluster configuration. Make sure that document sections 2.4 and 2.5.1 are completed
successfully.

1. Start daemons: mpjboot machines

2. Running HelloWorld

Execute: mpjrun.sh -np 4 -dev hybdev HelloWorld

3. Running test cases (Optional)

Execute: mpjrun.sh -np 2 -dev hybdev -jar $MPJ_HOME/lib/test.jar

4. Stop daemons: mpjhalt machines

2.5.4 Cluster Configuration with native device (using a native MPI library)

This section outlines steps to execute parallel Java programs in the cluster configuration with
native device.

1. Assuming the user has successfully carried out Section 2.2 and Section 2.3.

2. Check if your native MPI library works. It is assumed that the user has installed and
tested the native MPI library. To install MPICH for example go to
http://www.mpich.org/downloads/ and download the native MPI library, install and make
sure that it is working. Currently MPJ Express is only tested with following native
MPI libraries:

a) MPICH 3.0.4

b) MVAPICH 2.2

c) Open MPI 1.7.4

d) MS-MPI (for Windows)

By design MPJ Express should work with any native MPI library. If you have a different
native MPI library installed on your system, please feel free to test it and let us know.

3. Compile the JNI wrapper library (Mandatory)

a) Make sure cmake (2.6 or above) is installed on the system.

b) Create build directory: cd $MPJ_HOME/src/mpjdev/natmpjdev/lib; mkdir build

c) Generate Makefile using CMake: cd build; cmake ..

d) make: make

e) install: make install

i. This creates a shared library with the name “libnativempjdev.so” in
“$MPJ_HOME/lib”

4. Running HelloWorld

Execute: mpjrun.sh -np 2 –dev native HelloWorld

5. Running test cases (Optional)

a) Compile : cd $MPJ_HOME/test/nativetest; ./compile.sh

b) Execute: ./runtest.sh
i. To supply a machine file provide full path in the first argument of this

script: ./runtest.sh /full/path/to/machinefile

Advanced Options:

Running directly with mpirun to use options provided by the native MPI library

This is for the advanced user who wants to run parallel Java programs using custom
options for the native MPI library.

The mpjrun.sh script provides a wrapper to native mpirun command. The user can bypass
mpjrun.sh and directly call mpirun using the following template.

mpirun -np <number of processes> –machinefile </path/to/file/filename> java –cp
$MPJ_HOME/lib/mpj.jar:. –Djava.library.path=$MPJ_HOME/lib HelloWorld 0 0 native
userarg1 userarg2 userarg3

The above template consists of three parts: mpirun, java and user application. In this
way the user has flexibility to supply three kinds of options:

1. mpirun: these are supplied to native MPI library bootstrapping framework a.k.a
mpirun, for example –np and –machinefile

2. java: these are supplied to the JVM for example –cp and –Djava.library.path and
more.

3. user application: these are supplied to the user application for example userarg1
userarg2 userarg3 in the above template. The three arguments 0 0 native following
user application (classname or jar) are reserved for MPJ Express and are to be kept
intact. MPJ Express for conventional reasons searches for device name on argument
index 3 (i.e args[2]).

2.6 Advanced Options to mpjrun.sh

1. JVM arguments: JVM arguments may be specified to the mpjrun script that passes these
directly to the executing MPJ Express processes. For example, the following command
modifies the JVM heap size: mpjrun.sh -np 2 -Xms512M -Xmx512M HelloWorld

2. Application Arguments: Users may pass arguments to their parallel applications by
specifying them after "-jar <jarname>" or "classname" in the mpjrun script:

a. The user may pass three arguments “a”, “b”, “c” to the application as follows:
mpjrun.sh -np 2 HelloWorld a b c

b. Application arguments can be accessed in the program by calling the String[]
MPI.Init(String[] args) method. The returned array stores user arguments
[a,b,c].

String appArgs[] = MPI.Init(args);

3 MPJ Express Debugging

This section shows how to debug various modules of the MPJ Express software. It is possible to
debug MPJ Express on three levels:

1. The mpjrun Script: This script allows bootstrapping MPJ Express programs in cluster of
multicore configuration.

2. Core Library: Internals of the MPJ Express Software

3. MPJ Express Daemons: While running the cluster configuration, daemons execute on
compute nodes and are responsible for starting and stopping MPJ Express processes
when contacted by the mpjrun script.

3.1 The mpjrun Script

To turn ON debugging for the mpjrun script, follow these steps:

1. Edit $MPJ_HOME/conf/mpjexpress.conf file.

2. Change the value of mpjexpress.mpjrun.loglevel from "OFF" to "DEBUG".

3. The mpjrun script relevant log file is /current/directory/mpjrun.log file generated in
current directory.

3.2 Core Library

To turn ON debugging for the core library, follow these steps:

1 Edit $MPJ_HOME/conf/mpjexpress.conf file

2 Change the value of mpjexpress.mpi.loglevel from "OFF" to "DEBUG"

3 If the total number of MPJ Express processes is two, then the relevant log files will be
$MPJ_HOME/logs/user_name-mpj-0.log and $MPJ_HOME/logs/user_name-mpj-1.log for
processes 0 and 1 respectively.

3.3 MPJ Express Daemons (Cluster configuration only)

The MPJ Express daemons running on compute nodes can be debugged using following steps:

1. Edit $MPJ_HOME/conf/mpjexpress.conf file.

2. Change the value of mpjexpress.mpjdaemon.loglevel from "OFF" to "DEBUG".

3. Now log files can be seen in $MPJ_HOME/logs/daemon-<machine_name>.log file.

4 Known Issues and Limitations

A list of known issues and limitations of the MPJ Express software are listed below.

1. There is a known (up to some extent) problem on Windows and Solaris that results in
hanging MPJ processes. Normally this will be observed when MPJ test-cases will hang,
as result, not completing or throwing any error message.

We partially understand the problem but if some user encounters this problem, we would
request some more debugging information. The required information can be obtained as
follows. Edit $MPJ_HOME/src/xdev/niodev/NIODevice.java and goto line 3693 and
uncomment the line "ioe1.printStackTrace() ;". The line 3693 is in the MPJ Express
release 0.34 and it might change in the future. The general code snippet is like this:

catch (Exception ioe1) {
 if(mpi.MPI.DEBUG && logger.isDebugEnabled()) {
 logger.debug(" error in selector thread "
+ ioe1.getMessage()); } //ioe1.printStackTrace() ;
 } //end catch(Exception e) ...
 if(mpi.MPI.DEBUG && logger.isDebugEnabled()) {
logger.debug(" last statement in selector thread"); }

 } //end run()
 }; //end selectorThread which is an inner class

As a result now, when test-cases are executed again, users will see stacks periodically.
Most of these are related to socket closed exceptions that are normal. If the code hangs
now, the latest stack trace that is not about socket being closed is perhaps the reason of
this hanging behavior. We would request the users to kindly email us the output so that
we can fix the problem. A stack trace that leaves MPJ Express hanging on Solaris is as
follows:

java.nio.channels.CancelledKeyException
at sun.nio.ch.SelectionKeyImpl.ensureValid(SelectionKeyImpl.java:55)
at sun.nio.ch.SelectionKeyImpl.readyOps(SelectionKeyImpl.java:69)
at java.nio.channels.SelectionKey.isAcceptable(SelectionKey.java:342)
at xdev.niodev.NIODevice$2.run(NIODevice.java:3330)
at java.lang.Thread.run(Thread.java:595)

2. The merge operation is implemented with limited functionality. The processes in local-
group and remote-group *have* to specify 'high' argument. Also, the value specified by
local-group processes should be opposite to remote-group processes.

3. Any message sent with MPI.PACK can only be received by using MPI.PACK as the datatype.
Later, MPI.Unpack(..) can be used to unpack different datatypes

4. Using 'buffered' mode of send with MPI.PACK as the datatype really does not use the
buffer specified by MPI.Buffer_attach(..) method.

5. Cartcomm.Dims_Create(..) is implemented with limited functionality. According to the
MPI specifications, non-zero elements of 'dims' array argument will not be modified by
this method. In this release of MPJ Express, all elements of 'dims' array are modified
without taking into account if they are zero or non-zero.

6. Request.Cancel(..) is not implemented in this release.

7. MPJ applications should not print more than 500 characters in one line. Some users may
use System.out.print(..) to print more than 500 characters. This is not a serious
problem, because printing 100 characters 5 times with System.out.println(..) will
have the same effect as printing 500 characters with one System.out.print(..)

8. Some users may see this exception while trying to start the mpjrun module. This can
happen when the users are trying to run mpjrun.bat script. The reason for this error is
that the mpjrun module cannot contact the daemon and it tries to clean up the resources it
has. In doing so, it tries to delete a file named 'mpjdev.conf' using File.deleteOnExit()
method. This method appears not to work on Windows possibly because of permission
issues.

Exception in thread "main" java.lang.RuntimeException: Another mpjrun module is
already running on this machine
at runtime.starter.MPJRun.(MPJRun.java:135)
at runtime.starter.MPJRun.main(MPJRun.java:925)

This issue can be resolved by deleting mpjdev.conf file. This file would be present in the
directory, where your main class or JAR file is present. So for example, if the users are
trying to run "-jar ../lib/test.jar", then this file would be present in ../lib directory.

9. The MPJ Express infrastructure does not deal with security. The MPJ Express daemons
could be a security concern, as these are Java applications listening on a port to execute
user-code. It is therefore recommended that the daemons run behind a suitably
configured firewall, which only listens to trusted machines. In a normal scenario, these
daemons would be running on the compute-nodes of a cluster, which are not accessible
to outside world. Alternatively, it is also possible to start MPJ Express processes
'manually', which could help avoid runtime daemons. In addition, each MPJ Express
process starts at least one server socket, and thus is assumed to be running on machine
with configured firewall. Most MPI implementations assume firewalls as protection
mechanism from the outside world

10. One of the known issues of MPJ Express in cluster configuration is incorrect working
directory. This issue is reported on cluster build using Rocks clusters. MPJRun module
of MPJ Express reads the current directory i.e. user directory using
System.getProperty("user.dir"). It should return same path as Unix 'pwd' command. But
it is not giving same result.

java.io.IOException: Cannot run program "java" (in directory
"/state/partition1/home/aamir/projects/mpj-user"): error=2, No such file or
directory
 at java.lang.ProcessBuilder.start(ProcessBuilder.java:1029)
 at runtime.daemon.MPJDaemon.<init>(MPJDaemon.java:398)
 at runtime.daemon.MPJDaemon.main(MPJDaemon.java:1144)
Caused by: java.io.IOException: error=2, No such file or directory
 at java.lang.UNIXProcess.forkAndExec(Native Method)

As a manual work around for this issue is to use -wdir switch in mpjrun command and
giving path to the current directory where HelloWorld is placed i.e.

mpjrun.sh -np 4 -dev niodev -wdir /export/home/aamir/projects/mpj-user/
HelloWorld

5 Contact and Support

For help and support, join and post on the MPJ Express mailing list
(https://lists.sourceforge.net/lists/listinfo/mpjexpress-users). Alternatively, you may also contact
us directly:

1. Aamir Shafi (aamir.shafi@seecs.edu.pk)

2. Mohsan Jameel (mohsan.jameel@seecs.edu.pk)

3. Bryan Carpenter (bryan.carpenter@port.ac.uk)

4. Muhammad Ansar Javed (muhammad.ansar@seecs.edu.pk)

5. Bibrak Qamar (bibrak.qamar@seecs.edu.pk)

6. Aleem Akhtar (aleem.akhtar@seecs.edu.pk)

6 Appendices

Appendix A: Running MPJ Express on non-shared file system

MPJ Express applications can be executed on both shared file system and non-shared file system.
Steps to execute on both file systems are quite similar. Current version of MPJ Express supports
running of parallel Java applications in cluster mode on non-shared file system with niodev,
hybdev and mxdev devices. Following steps should be performed to run MPJ Express applications
on non-shared file system:

1. Install MPJ Express on all machines where you want to execute your application. You
can follow section 2.1, 2.2 and 2.3 for setting up environment for MPJ Express on each
machine.

2. Once MPJ Express is installed, use mpjdaemon script (see Appendix D) to boot daemons
on each machine. You will need to manually boot daemons on each machine.

3. Write machines file on your host system from where you want to launch your application
and write down machine names, IP addresses or aliases of the machines where you wish
to execute MPJ Express processes. Make sure daemons are running at those machines.

4. Use –src switch with mpjrun.sh script to enable working of MPJ Express on non-shared
file system. Example commands are given below:

 niodev: mpjrun.sh –np 2 –dev niodev –src HelloWorld

 hybdev: mpjrun.sh –np 2 –dev hybdev –src HelloWorld

Using –src switch will zip all the content of current working directory and will send to all
machines listed in machines file. Since zipping of files is done and then that zipped file is
sent to all machines through TCP so this feature should only be used for smaller projects.

5. Once job is finished you can stop MPJ daemons running at machines using mpjdaemon
script.

Appendix B: Changing protocol limit switch

MPJ Express uses two communication protocols: the first is 'eager-send', which is used for
transferring small messages. The other protocol is rendezvous protocol useful for transferring
large messages. The default protocol switch limit is 128 KBytes. This can be changed prior to
execution in following ways depending on whether you are running processes manually or using
the runtime.

1. Running MPJ Express applications manually (without using runtime): The users may
edit configuration file (for e.g. $MPJ_HOME/conf/mpj2.conf) to change protocol switch
limit. Look at the comments in this configuration file. The second entry, which should be
131072 if you have not changed it, represents protocol switch limit

2. Running MPJ Express applications with the runtime: Use -psl <val> switch to change
the protocol switch limit

Appendix C: MPJ Express Testsuite

MPJ Express contains a comprehensive test suite to test the functionality of almost every MPI
function. This test suite consists mainly of mpiJava test cases, MPJ JGF benchmarks, and MPJ
microbenchmarks. The mpiJava test cases were originally developed by IBM and later translated
to Java. As this software follows the API of mpiJava, these test cases can be used with a little
modification. MPJ JGF benchmarks are developed and maintained by EPCC at the University of
Edingburgh. MPJ Express is redistributing these benchmarks as part of its test suite. The original
copyrights and license remain intact as can be seen in source-files of these benchmarks in
$MPJ_HOME/test/jgf_mpj_benchmarks. Further details about these benchmarks can be seen
here. MPJ Express also redistributes micro-benchmarks developed by Guillermo Taboada.
Further details about these benchmarks can be obtained here

Compiling source code and Testsuite

1. Compiling MPJ Express source code

a. Being in $MPJ_HOME directory, execute ant

Produces mpj.jar, daemon.jar, and starter.jar in lib directory

2. Compiling MPJ Express test-code

a. cd test

b. ant

This produces test.jar in lib directory.

Running Testsuite

The suite is located in $MPJ_HOME/tests directory. The test cases have been changed from their
original versions, in order to automate testing. TestSuite.java is the main class that calls each of
the test case present in this directory. The build.xml file present in test directory, compiles all test
cases, and places test.jar into the lib directory. By default, JGF MPJ benchmarks and MPJ micro-
benchmarks are disabled. Edit $MPJ_HOME/test/TestSuite.java to uncomment these tests and
execute them. Note, after changing TestSuite.java, you will have to recompile the testsuite by
executing 'ant' in test directory.

1. cd mpj-user

With Runtime

2. Write a machines file

3. mpjrun.sh -np 2 -jar $MPJ_HOME/lib/test.jar

Appendix D: Useful scripts for MPJ Daemons

Following new scripts have been added in MPJ Express to check status of daemons or clean
daemons. Details of each script are outlined below:

mpjboot <machines_file>

This command will boot MPJ Express daemons at compute nodes specified in machines file.

mpjhalt <machines_file>

This command will halt MPJ Express daemons at compute nodes specified in machines file.

mpjstatus <machines_file>

This command will display current status of MPJ Express daemons at compute nodes specified
in machines file.

mpjclean <machines_file>

This command will clean all java process at compute nodes specified in machines file.

mpjinfo <machines_file>

This command will display all java process at compute nodes specified in machines file.

mpjdaemon <query> <hostnames>

This command takes one of the following queries and will perform respective operation on
specified hosts

-boot: start MPJ Express daemons
-halt: stop MPJ Express daemons
-status: display current status of MPJ Express daemons
-clean: clean all java process
-info: display all java process

For example, this command will boot daemons at localhost.

And this command will halt daemons at two hosts

Mpjdaemon command can be used to directly perform daemon operations without specifying
machines file. Default value for hostname is set as localhost.

mpjdaemon.bat <query>

This command is for Windows Operating System and will perform respective operation on
localhost only. Following operations are available with this command.

-boot: start MPJ Express daemons
-halt: stop MPJ Express daemons
-status: display current status of MPJ Express daemons

For example to boot/start daemons, following command will be used

Or to halt/stop daemons, following command will be used

Note that mpjdaemon.bat only work for localhost.

Appendix E: Switching to Old Collectives

MPJ Express supports running of parallel Java applications using two types of collective
primitives. Old collectives are implemented using linear algorithms and were used in earlier
versions (0.42 and previous) of MPJ Express. Improved collectives are implemented using
Minimum Spanning Tree (MST) and Bucket (BKT) Algorithms. In current version of MPJ
Express, new collectives are used by default. To switch back to old collectives follow these
steps:

1. Edit $MPJ_HOME/conf/mpjexpress.conf file.

2. Change the value of mpjexpress.mpi.old.collectives from "false" to "true".

3. Old collectives will be used in next launch of MPJ Express job.

