MPJ Express: An Implementation of MPI In

Java

Windows User Guide
18" July 2014

Document Revision Track

Version | Updates By

1.0 Initial version document Aamir Shafi

1.1 A new device ‘hybdeV’ is added for executing parallel Java | Aleem Akhtar, Mohsan
applications exploiting hybrid parallelism. Jameel, Aamir Shafi

1.2 A new device ‘native’ is added for executing parallel Java | Bibrak Qamar, Mohsan
applications on top of a native MPI library. Jameel, Aamir Shafi

1.3 Runtime updated and support for running Java Aleem Akhtar, Aamir
applications on non-shared file system added. New scripts | Shafi, Mohsan Jameel
for daemons are also added.

1.4 Improved collective primitives are added in MPJ Express. | Aleem Akhtar, Aamir

Some minor bugs are fixed

Shafi, Mohsan Jameel

Table of Contents

1 INErOAUCTION. ..ottt 5
1.1 (0o T} 7= (U= 4 Te] o - PRSP 5
1.1.1 MUIICOre CONFIGUIALION ..vviiiiiiii et s e e e s e e e s abee e s sareeas 6
1.1.2 Cluster CONFIGUIALION ..uiviiiiiei e e e s e e s sbte e e s snraeessanes 6

2 Getting Started With MPJ EXPIeSS........ccviiiieiie et 8
2. L PrE-TEOUISITES ..eeeeeeiieieeeeiiette et e e e ettt e e e e e ettt et e e e s s aa b et eeeees e s asstaaeeeeeesaassbaeaeeeeeesannnsbeaaeesesssannsrres 8

2. 2 INSEAllING IMIPJ EXPIESS .uuvteeiietieeeeetieeeesitieeesetteeesstteeessseeeesssaeaesaaseeeessasteeessasseaessnsseessssssesessnssasessnnes 9
2.3 Compiling User APPlICAtiONS .. .vviiiieiiieccciiee et e st e e e ae e e s str e e e s sabb e e e enbaeeeenareeeean 13
2.4 Running MPJ Express in the Multi-core Configurationcccoccuveeiiiiiiiiiciee e 13
2.5 Running MPJ Express in the Cluster Configuration.........ccuevieciiieiiiiiee e 14
2.5.1 Cluster Configuration With NIOAEVcccuiiiiiiiiiii e e e e 14
2.5.2 Cluster Configuration With hybBdeVceiiiiiiii i 15
2.5.4 Cluster Configuration with native device (using a native MPIlibrary)ccccccccevevvieiieeccieeennee. 15

2.6 Advanced Options tO MPJruN.Dat........coiiiiiiie e et ae e 24

3 MPJ EXPress DebUGQING.......cccveuieiieiieiie et 25
3.1 L ol S o Yol o ' | SRRSO 25
3.2 0o ¢l 1 T o 2 U PURIOPRRTOt 25
33 MPJ Express Daemons (Cluster configuration only)ccccccveiiiiiiii e 25

4 Known Issues and LImitationscccccoveeiiiiiiiiiniinee e 26
5 CoNntaCt aNd SUPPOITooveiiieiiieiesieeie ettt sre e sneens 27
N 0] 0T 010 TSR SRURRPRPR 28
Appendix A: Running MPJ Express on non-shared file systemcccccooeiiiiiiciie e, 28

Appendix B: Running MPJ Express without the runtime (manually)ccccoeeeiiiieciii e, 28

Appendix C: Changing protocol imit SWItChcooiiiiiii i e 30

Appendix D: MPJ EXPress TESESUILE ...uueiiiiiiieiiiiiee e eciiee e cettee et e e ee e e e e e tae e e e eabae e s esatre e e eeabaeessnseeeeennsenas 31
Compiling soUrce CoOde and TESTSUILEccvuvieiiciiiie it ettt et e e e tre e e e ebee e e e ebte e e e eabteeeessaneeeennes 31
L LY YL F o =T] VT =N 31
Appendix E: Useful scripts for MPJ DA@mMONScoccuiiiiiiiiie et eettee e eetre e e stre e s e evaee s e envree s e eaneeas 32

Appendix F: SWitching t0 Old CollECHIVES.......cccuiiii et rre e e areeas 34

1 Introduction

MPJ Express is a reference implementation of the mpiJava 1.2 API, which is an MPI-like API
for Java defined by the Java Grande forum. The mpiJava 1.2 API is the Java equivalent of the
MPI 1.1 specification document (http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html).

This release of the MPJ Express software contains the core library and the runtime infrastructure.
The software also contains a comprehensive test suite that is meant to test the functionality of
various communication functions.

MPJ Express is a message passing library that can be used by application developers to execute
their parallel Java applications on compute clusters or network of computers. Compute clusters is
a popular parallel platform, which is extensively used by the High Performance Computing
(HPC) community for large scale computational work. MPJ Express is essentially a middleware
that supports communication between individual processors of clusters. The programming model
followed by MPJ Express is Single Program Multiple Data (SPMD).

Although MPJ Express is designed for distributed memory machines like network of computers
or clusters, it is possible to efficiently execute parallel user applications on desktops or laptops
that contain shared memory or multicore processors.

1.1 Configurations

The MPJ Express software can be configured in two ways, as shown in Figure 1. The first
configuration—known as the multicore configuration—is used to execute MPJ Express user
programs on laptops and desktops. The second configuration—known as the cluster
configuration—is used to execute MPJ Express user programs on clusters or network of
computers. The cluster configuration relies on devices for communication. Currently there are
four communication devices for the cluster configuration:

1. Java New I/O (NIO) device known as niodev: niodev IS used to execute MPJ Express
user programs on clusters using Ethernet.

2. Myrinet device known as mxdev: mxdev IS Used to execute MPJ Express user programs on
clusters connected by Myrinet express interconnects. Currently nxdev iS not supported
under windows.

3. Hybrid device known as hybdev: hybdev IS Used to execute MPJ Express user programs on
clusters of multicore computers.

http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html

4. Native device known as native: native IS used to execute MPJ Express user programs on
top of a native MPI library (MPICH, Open MPI or MS-MPI).

MPJ Express Configurations

T

Cluster Configuration Multicore Configuration

—— N

niodev || hybdev || mxdev || native

Figure 1: MPJ Express configurations

1.1.1 Multicore configuration

The multicore configuration is meant for users who plan to write and execute parallel Java
applications using MPJ Express on their desktops or laptops—typically such hardware contains
shared memory and multicore processors. In this configuration, users can write their message
passing parallel application using MPJ Express and it will be ported automatically on multicore
processors. We envisage that users can first develop applications on their laptops and desktops
using multicore configuration, and then take the same code to distributed memory platforms
including clusters. Also this configuration is preferred for teaching purposes since students can
execute message passing code on their personal laptops and desktops. It might be noted that user
applications stay the same when executing the code in multicore or cluster configuration.

Under the hood, the MPJ Express library starts a single thread to represent an MPI process. The
multicore communication device uses efficient inter-thread mechanism.

1.1.2 Cluster configuration

The cluster configuration is meant for users who plan to execute their parallel Java applications
on distributed memory platforms including clusters or network of computers.

As an example, consider a cluster or network of computers shown in Figure 2. It shows shows
six compute nodes connected to each other via private interconnect. The MPJ Express cluster

configuration will start one MPJ Express process per node, which communicates to each other
using message passing.

Memory Memory Memory \ Memory Memory \ Memory \

Figure 2: MPJ Express Cluster Configuration Targets the Distributed Memory Platforms Including
Clusters and Network of Computers

Application developers can opt to use either of the four communication devices in the cluster
configuration:

Java New 1/0O (NI10O) device driver known as niodev
Myrinet device driver Known as mxdev
Hybrid device driver known as nybdev
Native device driver known as native

©ONo O

The Java NIO device driver (also known as niodev) Ccan be used to execute MPJ Express
programs on clusters or network of computers. The niodev device driver uses Ethernet-based
interconnect for message passing. On the other hand, many clusters today are equipped with
high-performance low-latency networks like Myrinet. MPJ Express also provides a
communication device for message passing using Myrinet interconnect—this device is known as
mxdev and is implemented using the Myrinet eXpress (MX) library by Myricom. These
communication drivers can be selected using command line switches.

Modern HPC clusters are mainly equipped with multicore processors (Figure 3). The hybrid
device is meant for users who plan to execute their parallel Java applications on such a cluster of
multicore machines. Hybrid device transparently uses both multicore configuration and cluster
configuration for intra-node communication and cluster configuration (NIO device only) for
inter-node communication, respectively.

Memory | Memory Memory | Memory | Memory Memory |

Figure 3: MPJ Express Hybrid Configuration Targeting Cluster of Multicore Machines

The fourth device—native device—is meant for users who plan to execute their parallel Java
applications using a native MPI implementation for communication. With this device bulk of
messaging logic is offloaded to the underlying MPI library. This is attractive because MPJ
Express can exploit latest features, like support for new interconnects and efficient collective
communication algorithms, of the native MPI library. Under Windows, this device is currently
tested and supported for MS-MPI—as the underlying native MPI library.

2 Getting Started with MPJ Express

This section shows how MPJ Express programs can be executed in the multicore, cluster and
hybrid configuration

2.1 Pre-requisites

» Java 1.6 (stable) or higher (Mandatory).

» Apache ant 1.6.2 or higher (Optional): ant is required for compiling MPJ Express source
code.

o Perl (Optional): MPJ Express needs Perl for compiling source code because some of the
Java code is generated from Perl templates. The build file will generate Java files from
Perl templates if it detects perl on the machine. It is a good idea to install Perl if you want
to do some development with MPJ Express.

» A native MPI library (Optional): Native MPI library such as MS-MPI is required for
running MPJ Express in cluster configuration with native device.

» Visual Studio (Optional): MPJ Express needs Visual Studio to build JNI wrapper library
for the native device.

2. 2 Installing MPJ Express

This section outlines steps to download and install MPJ Express software.
1. Download MPJ Express and unpack it

2. Assuming unpacked 'mpj express' is in ‘c\mpj, Right-click My
Computer->Properties—> Advanced tab—>Environment Variables and export the following
system variables (user variables are not enough)

a. Set the value of variable vps HOME @S c:\mpj [see Fig 4,Fig 5 and Fig 6]
b. Append the value of variable path 8S c:\mpj\bin [see Fig 7]
See the snapshots below

Open

Open folder location
Manage

Map network drive...
Disconnect netwaork drive...
Restore previous versions
Send to

Cut

Copy

Create shortcut
Delete

Rename

Properties

Figure 4: Right click on my computer and select Properties

@I
@I

™ » Control Panel »

System Properties

Control Panel Home

Computer Name I Hardware I Advanced Il System Protection I Hemotel

Device M
svice Vanager You must be logged on as an Administrator to make most of these changes.

Remote settings

Performance
[yl System protection Visual effects, processor scheduling, memory usage, and virtual memary
l&' Advanced system settings I

User Profiles

Desktop settings related to your logon

Startup and Recoveny
System startup, system failure, and debugging irformation

[Environment Variables. ..]

OK || Cancel Apply
See also
Action Center Computer description:
Windows Update Workgroup: WORKGROUP
Performance Information and Windows activation
Tools

% You must activate today. Activate Windows now

Hz 3.00 GHz

play

@'Change settings

m

Figure 5: Select Environment Variables to Add/Edit variables

Variable name:

Variable value:

e
Environment Vanables

IUser variables for M Yasir Shafi

-

52 Value

C:\Program Files (x86)\Foxit Softwarel,..
%ol ISERPROFILE S0 \AppDataiLocalTemp

I I'~"IF‘J=HOI'~"IE

I 2LlSERPROFILE:\AppDataLocal {Temp

c:\ympj

New... || Edit.. || Delete
Ok || Cancel |

o
Variable Value i
ANT_HOME C:\MPI\apache-ant-1.9.2
CLASSPATH .
ComSpec C:Windows'system32cmd. exe
FP_NO_HOST_C... NO -

|| New... || Edit.. || Delete |

| oK || Cancel

Figure 6: Add MPJ_HOME as new Environment Variable

Environment Variables

- .
Edit System Variable [

Variable name: Path
Variable value: ME %% pinf; %&MPI_HOME %sbin;| |
[QK] [Cancel]
System variables

Variable Value i
Path C:\Windows\system32;C:\Windows; C:\...
PATHEXT .COM; .EXE; .BAT;.CMD;. VBS; . VBE;.J5;.... L
PROCESSOR_A... AMDG4
PROCESSOR_ID... Intel54 Family 6 Model 23 Stepping 10, ... ™

New.. || Edt..]l[Delete |

[0K] [Cancel]

Figure 7: Append Path variable

3. For windows with Cygwin (assuming ‘mpj express’ is in ‘c:\mpj”)
The recommended way to is to set variables as in Windows

If you want to set variables in cygwin shell

export MPJ HOME="c:\\mpj"
export PATH=S$PATH: "$MPJ_HOME\\bin"

4. Create a new working directory for MPJ Express programs. This document assumes that
the name of this directory is “mpj-user”.

5. Compile the MPJ Express library (Optional): cd sMpJ HOMES; ant

2.3 Compiling User Applications

This section shows how to compile a simple Hello World parallel Java program.

1. Write Hello World MPJ Express program and save it as selloWorld.java

import mpi.*;
public class HelloWorld {

public static void main(String args[]) throws Exception {
MPI.Init (args):;

int me = MPI.COMM WORLD.Rank() ;
int size = MPI.COMM WORLD.Size() ;

System.out.println(:Hi from <"+me+">") ;
MPI.Finalize() ;

}

2. (:On1p”e:javac -cp .;%MPJ HOMES%/lib/mpj.jar HelloWorld.java

2.4 Running MPJ Express in the Multi-core Configuration

This section outlines steps to execute parallel Java programs in the multicore configuration.

1. Assuming the user has successfully carried out Section 2.2 and Section 2.3

2. Running Helloworld
Execute: mpjrun.bat -np 2 HelloWorld

3. Running test cases (Optional) [Test suite is provided with MPJ Express]

a. Compile (Optional): cd sMPJ HOMES/test; ant

b. Execute: mpjrun.bat -np 2 -jar $MPJ HOMES%/lib/test.jar

2.5 Running MPJ Express in the Cluster Configuration

This section outlines steps to execute parallel Java programs in the cluster configuration with
three communication device drivers including niodev, hybdev and native.

2.5.1 Cluster Configuration with niodev

This section outlines steps to execute parallel Java programs in the cluster configuration with
niodev COMmMunication device driver.

1.

2.

Assuming the user has successfully carried out Sections 2.2 and 2.3.

Write a machines file stating machines name, IP addresses, or aliases of the nodes where
you wish to execute MPJ Express processes. Save this file as 'machines’ in mpj-user
directory. This file is used by scripts like mpiboot, mpjhalt, mpjrun.bat and mpjrun.sh tO
find out which machines to contact.

Suppose you want to run a process each on 'machinel' and 'machine2’, then your
machines file would be as follows

machinel
machine2

Note that in real world, 'machinel’ and 'machine2’ would be fully qualified names,
IP addresses or aliases of your machine

Start the daemons: mpjdaemon.bat -boot

This should work if smps_nomeEs/bin has been successfully added to spaTus variable. You
will need to run this command on each machine to start daemons. If logging is enabled
then each daemon produces a log file named daemon-<machine name>.log iN
$MPJ_HOME%/logs direCtory.

Running HelloWorld
Execute: mpjrun.bat -np 2 -dev niodev HelloWorld
Running test cases (Optional) [Test suite is provided with MPJ Express]
Execute: mpjrun.bat -np 2 -dev niodev -jar %MPJ HOMES/lib/test.jar

Stop the daemons: mpjdaemon.bat -halt

After you are done with executing all the programs, make sure that you halt the daemons
at each machine.

2.5.2 Cluster Configuration with hybdev

This section outlines steps to execute parallel Java programs in the hybrid configuration using
multicore and cluster configurations. Hybrid configuration depends on Multicore configuration
and Cluster configuration. Make sure that document sections 2.4 and 2.5.1 are completed
successfully.

1. Start the daemons: mpjdaemon.bat -boot
2. Running Helloworld
Execute: mpjrun.bat -np 2 -dev hybdev HelloWorld
3. Running test cases (Optional) [Test suite is provided with MPJ Express]
Execute: mpjrun.bat -np 2 -dev hybdev -jar $MPJ HOMES%/lib/test.jar

4, StOp the daemons: mpjdaemon.bat -halt

2.5.4 Cluster Configuration with native device (using a native MPI library)

This section outlines steps to execute parallel Java programs in the cluster configuration with
native device.

1. Assuming the user has successfully carried out Section 2.2 and Section 2.3.

2. Since MPJ Express native device relies on a native MPI it is assumed that the user has
installed and tested the native MPI library. Better to run a simple helloworld like program
to test the native MPI. Currently MPJ Express is only tested on MS-MPI (under
Windows).

By design MPJ Express should work with any native MPI library. If you have a different
native MPI library installed on your system, please feel free to test it and let us know.

3. Compile the JNI wrapper library (Mandatory):

This requires Visual Studio to generate a dynamic library (nativempjdev.dll) to be used
by MPJ Express to interface with the native MPI library. Open Visual Studio and follow
the steps provided below:

a. File>New->Project: Create a Win32 Project with the name of nativempjdev

b Recent [-NET Framework 4.5 v} Sort by: | Default v] &= Search Installed Templates (Ctrl+E) P~
4 Installed + o
h Win32 Console Application Visual C++ Type: Visual C++
4 Templates A project for creating a Win32 application,
b Visual Basic n MFC Application NisialCis console application, DLL, or static library
& &8
b Visual C&
A oy
4 Visual C++ Win32 Project Visual C++
ATL
o
CLR K] Empty Project Visual C++
General
i
MFC D | Makefile Project Visual C++
Test
Win32
b Visual F#
TypeScript
Python
v Other Project Types
Samples
b Online
Click here to go online and find templates.
Name: l nativempjdev|]
Location: E\y}g{slgdocuments\visual studio 2013\Projects\mpj v‘ Browse...
Solution name: nativempjdev Create directory for solution

["] Add to source control

Cancel

Figure 15: Create a Win32 Project with the name of nativempjdev

b. Click next-> set Application type as DLL and in Additional options tick Empty
project - finish

Win32 Application Wizard - nativempjde

E \ Application Settings

Overview Application type: Add common header files for:
() Windows application T

(©) Console application

®Du

() Static library

Application Settings
Additional options:
Empty project

Security Development Lifecyde (SDL)
checks

Figure 16: Set Application type as DLL and in Additional options tick Empty project

c. Right click on project nativempjdev in the Solution Explorer and go to
properties. Set Additional Include Directories

Configuration: I Release

~| Platform: [Active(s4)

4 Configuration Properties
General
Debugging
VC++ Directories
4 C/Cr+
Optimization
Preprocessor
Code Generation
Language
Precompiled Heade
Output Files
Browse Information
Advanced
All Options

Additional Include Directories
Additional #using Directories

Debug Information Format

Common Language RunTime Support
Consume Windows Runtime Extension
Suppress Startup Banner

Yes (/nologo)

Warning Level [

Additional Include D@‘tories

Treat Warnings As Errors
SDL checks
Multi-processor Compilation

Command Line
b Linker -
< | i 3

Additional Include Directories

Specifies one or more directories to add to
than one. (/[path])

JETR e y—

I [

|5

Figure 17: Set Additional

C:\Program Files\Java)

C:\Program Files\Java\jdk1.6.0_45\include

C:\Program Files\Microsoft MPNInc\amd64
C:\Program Files\Microsoft MPNnc

< | [[[} |

Inherited values:

Inherit from parent or project defaults

-

Macros>>

0K

|| cancer |

Include Directories

d. Set Additional Library Directories in the Linker

Release

Configuration:

Output Files

Browse Informa

Advanced

All Options

Command Line
4 Linker

General

Input

Manifest File

Debugging

System

Optimization

Embedded IDL

Advanced

All Options

Command Line
L T

-~

tion

Windows Metadata

»

v | Platform: |Active(x64) '] [Configuration Manager...]
Output File $(OutDir)$(TargetName)$(TargetExt) _‘]
Show Progress Not Set [
Version
Enable Incremental Linking No (/INCREMENTAL:NO)
Suppress Startup Banner Yes (/NOLOGO)
Ignore Import Library No =
Register Output No
Per-user Redirection No
Additional Library Directories
Link Library Dependencies Yes \

Use Library Dependency Inputs
Link Status

Prevent DIl Binding

Treat Linker Warning As Errors

7
Additional Lil}fy Directories
~

Additional Library Directories
Allows the user to override the environmé

C:\Program Files\Microsoft MPI\Lib\amd64

Inherited values:

L

I |

=

Inherit from parent or project defaults

=

Macros>>

OK

|| conce |

Figure 18: Set Additional Include Directories

e. Set Additional Dependencies (msmpi.lib) in the Linker

Configuration: [Release

[2

PY

~| Platform: [Active(64)

VJ [Configuration Manager...]

Output Files

Advanced

All Options

Command Line
4 Linker

General

Input

Manifest File

Debugging

System

Optimization

Embedded IDL

Advanced
All Options
Command Line

¥ i Prem——

Browse Information

Windows Metadata

-

»

Additional Dependencies
Ignore All Default Libraries
Ignore Specific Default Libraries
Medule Definition File

Add Module to Assembly
Embed Managed Resource File
Force Symbol References

Delay Loaded Dlis

Assembly Link Resource

kernel32.tauser32.lib;gdi32.lib;winspool.lib;comdig32.lib;

,
Additional Depen*rl\cies

7

msmpi.lib|

<

Inherited values:

Additional Dependencies

Specifies additional items to add to the link{|

kernel32.lib
user32.lib
gdi32.lib
winspool.lib

comdlg32.lib

[¥] Inherit from parent or project defaults

el

[ok

|| concet |

f. Right click on ‘Header Files’>Add->Existing Item... to add Header Files

Solution Explorer > 1
@& | B @im| -
Search Solution Explorer (Ctrl+;) S

] Solution 'nativempjdev' (1 project)
4 [%] nativempjdev
@ External Dependencies

&3

‘O New Item... Ctrl+Shift+A Add C
‘Eﬂ Existing Item...] Shift+Alt+ A BF Class Wizard... Ctrl+5Shift+X
5 Mew Filter Scope to This
e Class... MNew Solution Explorer View
e Resource.. H Cut Ctrl+X

(W) Copy Ctrl+C

Paste Ctrl+V
X Delete Del

¥ Rename

& Properties Alt+Enter

Figure 19: Navigate to Header Files under the solution nativempjdev

g. Browse into %MPJ_HOME%\src\mpjdev\natmpjdev\lib and select the header
files (*.h)

v Add Existing Item - nativempjdev x|
@Qv‘ L« mpj-v041 » src » mpjdev » natmpjdev » lib » v l 4,! ' S ol
Organize v New folder =~ 0 @
- A g ifi V] 1Z
DQ Microsoft Visual St — Name Date modified Type Size
.. Projects ! build 3/28/2014 4:39 PM File folder
h| mpjdev_natmpjdev_Comm.h 3/19/2014 5:34 AM C/C++ Header 5 K
i+ Favorites [n) mpjdev_natmpjdev_Group.h 3/19/2014 5:34 AM C/C++ Header 4 KH
B Desktop [n] mpjdev_natmpjdev_Intercomm.h 3/19/2014 5:34 AM C/C++ Header 1KH
& Downloads = (1] mpjdev_natmpjdev_Intracomm.h 3/19/2014 5:34 AM C/C++ Header 5 KH
| Recent Places] mpjdev_natmpjdev_NativeRecvRequesth \ 3/19/2014 5:34 AM C/C++ Header 1 KH
|n] mpjdev_natmpjdev_NativeSendRequesth \32/19/2014 5:34 AM C/C++ Header 1KH
- Libraries] mpjdev_natmpjdev_shared.h $/19/2014 5:34 AM C/C++ Header 4 KH
[5] Documents
J» Music)
=] Pictures
videos
1% Computer
2 A - < (1 | »
File name: "mpjdev_natmpjdev_Comm.h" "mpjdev_natmpjdev_Group ¥ [AII Files (*.*) VI
[Add | | cancel |

Figure 20: Add header files

a. Right click on ‘Source Files’=> Add->Existing Item... to add Source Files

vq Add Existing Item - nativempjdev

OO | | « mpj-v0.41 » src » mpjdev » natmpjdev » lib » - | 49 ||| Search tib o
-_——— = =
Organize v New folder gz l @
’d Microsoft Visual St— Name & Date modified Type Size
I, Projects L. build 3/28/2014 439 PM File folder
5] Vmpjdev_natmpjdev_Comm.c 4/3/201410:40 AM C Source 27 KH
¢ Favorites | Q'm ev;nétméjéé\};ﬁ;oup.c. 3/19/2014534 AM C Source 12 k4
Bl Desktop ﬂ rrrmpjide;_natm;jrdev_lnte?comm.c i 3/19/2014534 AM C Source 3K
& Downloads =i\ | €] mpjdev_natmpjdev_Intracomm.c 3/19/2014 5:34 AM C Source 20 KH
| Recent Places | _CJ mpjdev_natmpjdev_NativeRecvRequest.c 3/19/2014 5:34 AM C Source 10 KH
| ﬂ mpjdev_natmpjdev_NativeSendRequest.c | 3/19/2014 5:34 AM C Source 5KH
4 Libraries
E’, Documents
J’ Music |
(&) Pictures
B8 videos
-i Computer |] 1 | »
R . tee s e E g
File name: "mpjdev_natmpjdev_Comm.c" "mpjdev_natmpjdev_Group [A" Files (*.%) ']
[A | [cance |

Figure 21: Add source files

b. Right click on nativempjdev Solution and Build. This creates the dynamic library
(nativempjdev.dil)

Solution Explorer - 0
@e--a@m &=
Search Solution Explorer (Ctrl+;) el

fal Solution 'nativempjdev' (1 project)

v External Dependencies

Rebuild +-| Header Files
Clean mpjdev_natmpjdev_Comm.h
View . B mpj.de\r,natmpj.davﬁmup‘h
B mpjdev_natmpjdev_Intercomm.h
Analyze ' B mpjdev_natmpjdev_Intracomm.h
Project Only > B mpjdev_natmpjdev_NativeRecvRequest.h
Scope to This mpjdev_natmpjdev_NativeSendRequest.h
B jd tmpjdev_shared.h
Iﬁ:] MNew Solution Explorer View s ev._na Mmpjder_shar
4 Resource Files
Profile Guided Optimization *» L Source Files
Build Dependencies » *++ mpjdev_natmpjdev_ Comm.c
*++ mpjdev_natmpjdev_Group.c
Add ' ++ mpjdev_natmpjdev_Intercomm.c
g* Class Wizard... Ctrl+Shift+X #4 mpjdev_natmpjdev Intracomm.c
-2} Manage MuGet Packages... ++ mpjdev_natmpjdev_MativeRecvRequest.c
4 jd tmpjdev_NativeSendR ct.
L% Set as StartUp Project mpjdev_natmpjdev_NativeSendRequest.c
Debug]
Source Control 3
Cut Cerl+X SELIEY Team Explorer Class View
Paste Ctrl+V
[z b pjdev Project Properties
Rename
| &
Unload Project
Rescan Solution b nativempjdev
@ Open Folder in File Explorer it Dependencies
& Properties Alt+Enter it File c\Users' R, o o cume

nativempjdev

— T Namespace

Figure 22: Build

c. Install the

newly created ‘nativempjdev.dll’.
project\folder\x64\Release (or whatever x32\Release or \x64\Debug etc)

Al

w{ Favorites
Bl Desktop
& Downloads

15 Recent Places

. Libraries
@ Documents
J’ Music
[E] Pictures
B8 videos

18 Computer
&L, Local Disk (C)

a Local Disk (Dz)

“j MNetwaork

Documents library
Release

Name

& nativempjdev.pdb
’Q nativempjdev.lib

#]l nativempjdev.exp

New folder

Date medified Type

4/3/201411:35 AM Program Debug D...

4/3/201411:35 AM Object File Library
4/3/2014 11:35 AM Exports Library File

Copy from

e - - —
g« Visual Studio 2013 » Projects b mpj b nativempjdev » 64 » Release v. earch Release

Organize « [@7] Open with... Share with + Burn

Arran

Size

267 KB
21 KB
13KB

& natwemmde\r.a I N\

4732014 11:35 AM Annlication extens

i L =

Edit with Motepad++

Open with...

Share with >
Add to archive..,

Add te "nativempjdev.rar”

Compress and email...

Compress to "nativempjdev.rar” and email

Restore previous versions
Send to »

Cut

Create shortcut
Delete

Rename
Open file location

Properties

Figure 23: Copy nativempjdev.dll

d. Paste ‘nativempjdev.dll’ into %MPJ _HOME%\lib

28 KB

your

— - :
&)= v Bibrak » mpj0.41 > Tib =
— — = 5
Organize v Include in library v Share with v Burn New folder

2 Favorites o] Name : Date modified Type Size
| log4}-1.4.u.jar LU/ LLIZUU0 BIUS AVE EXECUTanie jar rie 343 KB
B Desktop €] mpijar 3/31/2014 4:50 PM Executable Jar File 160 KB
» Seymioads] mpiExp.jar 3/31/20144:50 PM Executable Jar File 6 KB
M Recerit Rlaces 1] mpjjar 3/31/2014 4:50 PM Executable Jar File 296 KB
: {%] mpjbuf.jar 3/31/2014 4:50 PM Executable Jar File 39 KB
v‘?q“b'a’ies || mpjdev.jar 3/31/2014 450 PM Executable Jar File 34 KB
—' Rocumetits 1] mxdev.jar 3/31/2014 4:50 PM Executable Jar File 9KB
’J’ Mustc = [nativempjdev.dil 4/3/201411:35 AM Application extens... 28 k8|
(&) Pictures 4] niodev.jar 3/31/2014 450 PM Executable Jar File 39KB
& videos 1] smpdev.jar 3/31/2014 4:50 PM Executable Jar File 23KB
|| starter.jar 3/31/2014 4:50 PM Executable Jar File 24 KB
1% Computer] test,jar 3/31/2014 2:55PM Executable Jar File 483 KB
& Local Disk (C)] tools.jar 10/22/2006 8:08 AM Executable Jar File 55 KB
i, Lol Bisk (D) %] wrapper.dIl 6/23/2007 5:49 AM Application extens... 80 KB
i || wrapper.jar 6/23/2007 5:49 AM Executable Jar File 82 KB
B Network « | xdevijar 3/31/2014 4:50 PM Executable Jar File 2KB

Figure 24: Paste nativempjdev.dll into %MPJ_HOME%\lib

Running HelloWorld

Execute: mpjrun.bat -np 2 -dev native HelloWorld

Running test cases (Optional)

a. Compile :

cd “%MPJ HOMES%”/test/nativetest

compile.bat

b. Execute:

cd “%MPJ HOMES%”/test/nativetest

runtest.bat

i. To supply a machine file provide full path in the first argument of this

script: runtest.bat /full/path/to/machinefile

Advanced Options:

Running directly with mpiexec to use options provided by native MPI library

This is for the advanced user who wants to run parallel Java programs using custom

options to the native MPI library.

The mpjrun.bat SCript provides a wrapper to native mpiexec (mpirun) command. The user
can bypass mpjrun.bat and directly call mpiexec using the following template.
mpiexec -np <number of processes> -machinefile <path\to\file\filename> java -cp

“$MPJ HOME$”/lib/mp3j.jar;. -Djava.library.path="%MPJ HOME$”/lib HelloWorld 0 0
native userargl userarg2 userarg3

The above template consists of three parts: mpiexec, java and user application. In this
way the user has flexibility to supply three kinds of options:

1. mpiexec: these are supplied to native MPI library bootstrapping framework (a.k.a
mpirun OF mpiexec), for example -np and -machinefile

2. java: these are supplied to the JVM for example ~cp and ~pjava.library.path and
more.

3. user application: these are supplied to the user application for example userargl
userarg2 userarg3 in the above template. The three arguments 0 0 native following
user application (classname or jar) are reserved for MPJ Express and are to be kept
intact. MPJ Express for conventional reasons searches for device name on argument
index 3 (Ie args [2]).

2.6 Advanced Options to mpjrun.bat

1. JVM arguments (Optional): JVM arguments may be specified to the mpjrun script that
passes these directly to the executing MPJ Express processes. For example, the following
command modifies the JVM heap size:

mpjrun.bat -np 2 -Xms512M -Xmx512M HelloWorld

2. Application Arguments (Optional): Users may pass arguments to their parallel
applications by specifying them after "-jar <jarname>" OF "classname" IN the mpjrun
script:

a. The user may pass three arguments “a”, “b”, “c” to the application as follows:
mpjrun.bat -np 2 HelloWorld a b c

b. Application arguments can be accessed in the program by calling the stringi]
MPI.Init (String[] args) Method. The returned array stores user arguments (a,b,c].

String appArgs[] = MPI.Init(args);

3 MPJ Express Debugging

This section shows how to debug various modules of the MPJ Express software. It is possible to
debug MPJ Express on three levels:

1. The mpjrun Script: This script allows bootstrapping MPJ Express programs in cluster of
multicore configuration.

2. Core Library: Internals of the MPJ Express Software

3. MPJ Express Daemons: While running the cluster configuration, daemons execute on
compute nodes and are responsible for starting and stopping MPJ Express processes
when contacted by the mp+ run script.

3.1The mpjrun SCI’ipt
To turn ON debugging for the mp5run script, follow these steps:

1. Edit $MPJ HOMES%/conf/mpjexpress.conf file.
2. Change the value of mpjexpress.mpjrun.loglevel from "orr" to "DERUG”.

3. The mpjrun script relevant |Og file is /current/directory/mpjrun.log file

3.2Core Library

To turn ON debugging for the core library, follow these steps:
1 Edit $MPJ HOMES/conf/mpjexpress.conf file
2 Change the value of mpjexpress.mpi.loglevel from "orr" t0 "DERUG"

3 If the total number of MPJ Express processes is two, then the relevant log files will be
$MPJ HOMES%/logs/user name-mpj-0.log and $MPJ HOMES%/logs/user name-mpj-1.log for
processes 0 and 1 respectively.

3.3 MPJ Express Daemons (Cluster configuration only)

The MPJ Express daemons running on compute nodes can be debugged using following steps:
1. Edit $MPJ HOMES/conf/mpjexpress.conf file.

2. Change the value of mpjexpress.mpjdaemon. loglevel from "orr" t0 "DEBUG".

3.

Now log files can be seen in svpJ HOME/1ogs/daemon-<machine name>.log file.

4 Known Issues and Limitations

A list of known issues and limitations of the MPJ Express software are listed below.

1

The merge operation is implemented with limited functionality. The processes in local-
group and remote-group *have* to specify 'high' argument. Also, the value specified by
local-group processes should be opposite to remote-group processes.

Any message sent with vp1.pack can only be received by using mp1.pack as the datatype.
Later, mp1.unpack (. .) can be used to unpack different datatypes

Using 'buffered’ mode of send with mp1.pack as the datatype really does not use the
buffer specified by mvp1.Buffer attach(..) method.

Cartcomm.Dims Create(..) IS implemented with limited functionality. According to the
MPI specifications, non-zero elements of 'dims' array argument will not be modified by
this method. In this release of MPJ Express, all elements of 'dims' array are modified
without taking into account if they are zero or non-zero.

Request.Cancel (..) IS NOtimplemented in this release.

MPJ applications should not print more than 500 characters in one line. Some users may
USe system.out.print (..) t0 print more than 500 characters. This is not a serious
problem, because printing 100 characters 5 times with system.out.printin(..) Will have
the same effect as printing 500 characters with one system.out.print(..)

Some users may see this exception while trying to start the mp3run module. This can
happen when the users are trying to run mpjrun.bat Script. The reason for this error is
that the mp3run module cannot contact the daemon and it tries to clean up the resources it
has. In doing so, it tries to delete a file named 'mpjdev.conf' using rile.deleteonExit ()
method. This method appears not to work on Windows possibly because of permission
issues.

Exception in thread "main" java.lang.RuntimeException: Another mpjrun module is
already running on this machine

at runtime.starter.MPJRun. (MPJRun.java:135)
at runtime.starter.MPJRun.main (MPJRun.java:925)

This issue can be resolved by deleting mpjdev.conf file. This file would be present in the
directory, where your main class or JAR file is present. So for example, if the users are
trying to run "-jar ../1ib/test.jar", then this file would be present in . ./1iv directory.

8. The MPJ Express infrastructure does not deal with security. The MPJ Express daemons
could be a security concern, as these are Java applications listening on a port to execute
user-code. It is therefore recommended that the daemons run behind a suitably
configured firewall, which only listens to trusted machines. In a normal scenario, these
daemons would be running on the compute-nodes of a cluster, which are not accessible
to outside world. Alternatively, it is also possible to start MPJ Express processes
'manually’, which could help avoid runtime daemons. In addition, each MPJ Express
process starts at least one server socket, and thus is assumed to be running on machine
with configured firewall. Most MPI implementations assume firewalls as protection
mechanism from the outside world.

5 Contact and Support

For help and support, join and post on the MPJ Express mailing list
(https://lists.sourceforge.net/lists/listinfo/mpjexpress-users). Alternatively, you may also contact
us directly:

1 Aamir Shafi (aamir.shafi@seecs.edu.pk)

2 Mohsan Jameel (mohsan.jameel@seecs.edu.pk)

3 Bryan Carpenter (bryan.carpenter@port.ac.uk)

4 Muhammad Ansar Javed (muhammad.ansar@seecs.edu.pk)

5 Bibrak Qamar (bibrak.gamar@seecs.edu.pk)

6 Aleem Akhtar (aleem.akhtar@seecs.edu.pk)

https://lists.sourceforge.net/lists/listinfo/mpjexpress-users
mailto:aamir.shafi@seecs.edu.pk
mailto:mohsan.jameel@seecs.edu.pk
mailto:bryan.carpenter@port.ac.uk
muhammad.ansar@seecs.edu.pk
mailto:bibrak.qamar@seecs.edu.pk
mailto:aleem.akhtar@seecs.edu.pk

Appendices

Appendix A: Running MPJ Express on non-shared file system

MPJ Express applications can be executed on both shared file system and non-shared file system.
Steps to run on both file systems are quite similar. Current version of MPJ Express supports
running of MPJ Express applications in cluster mode on non-shared file system with niodev,
hybdev and mxdev devices. Following steps should be performed to execute MPJ EXxpress
applications on non-shared file system:

1.

Install MPJ Express on all machines where you want to execute your application. You
can follow section 2.1, 2.2 and 2.3 for setting up environment for MPJ Express on each
machine.

Once MPJ Express is installed, use mpjdaemon.bat Script (see Appendix D) to boot
daemons on each machine. You will need to manually boot daemons on each machine.

Write machines file on your host system from where you want to run your application
and write down machine name, IP addresses, or aliases of the machines where you wish
to execute MPJ Express processes. Make sure daemons are running that those machines.

Use -src switch with mpjrun script to enable working of MPJ Express on non-shared file
system. Example commands are given below:

— niodev: mpjrun.bat —-np 2 -dev niodev -src HelloWorld

— hybdev: mpjrun.bat —-np 2 -dev hybdev -src HelloWorld

Using -src switch will zip all the content of current working directory and will send to all
machines listed in machines file. Since zipping of files is done and then that zipped file is
sent to all machines through TCP so this feature should only be used for smaller projects.

Once job is finished you can stop MPJ daemons running at machines.

Appendix B: Running MPJ Express without the runtime (manually)

There are two fundamental ways of running MPJ Express applications. The first, and the
recommended way is using the MPJ Express runtime infrastructure, alternatively the second way

involves the 'manual’ start-up of MPJ Express processes. We do not recommend starting
programs manually as normal procedure. This section documents the procedure for manual start-
up, mainly to allow developers the flexibility to create their own initiation mechanisms for MPJ
Express programs. The runmpj.sh script can be considered one example of such a mechanism

1.

cd mpj-user

2. This document is assuming mpj-user as the working directory for users. The name mpj-
user itself has no significance.

3. Write a configuration file called 'mpj.conf' as follows.

a.

A typical configuration file that would be used to start two MPJ Express processes is
as follows. Note the names 'machinel’ and 'machine2' would be replaced by
aliases/fully-qualified-names/ IP-addresses of the machines where you want to start
MPJ EXxpress processes

Number of processes

2

Protocol switch limit

131072

Entry in the form of machinename@port@rank@debug port

machinel@20000@20001Q0@0
machine2@20000@20001@1Q0

The lines starting with '#' are comments. The first entry which is a number ('2' above)
represents total number of processes. The second entry, which is again a number
('131072" above) is the protocol switch limit. At this message size, MPJ Express
changes its communication protocol from eager-send to rendezvous. There are a
couple of entries, one for each MPJ Express process, and each in the form of machine
name (OR)IP@READ_PORT@WRITE_PORT@RANK@DEBUG_PORT. Using
this, the users of MPJ Express can control where each MPJ Express process runs,
what server port it uses, and what should be the rank of each process. The rank
specified here should exactly match the rank argument provided while manually
starting MPJ Express processes (using java command). When the users decide to run
their code using np;run, this file is generated programmatically.

Sample configuration files can be found in svps HoMES/cont directory. If you wish to
start MPJ processes on 1ocalhost, SE€ $MPJ HOMES/conf/local2.conf file.

Each MPJ process uses two ports. Thus, do not use consecutive ports if you are
trying to execute multiple MPJ Express processes on same node. A sample file for
running two MPJ Express processes on same machine would be

Number of processes

2

Protocol switch limit
131072

Entry in the form of
machinename@read port@write port@rank@debug port
localhost@20000@20001@0@0
localhost@20002@20003@1@0

4. Running your MPJ Express program.
a. Running class files

For all the machines listed in mpj.conf, login to each Windows machine, change
directory to smpJ HOMES

java -cp .;%MPJ HOMES%/lib/mpj.jar World <rank> mpj.conf niodev

The <rank> argument should be 0 for process 0 and 1 for process 1. This should
match to what has been written in configuration file (mpj.conf). Check the entry
format in the configuration file to be sure of the rank

b. Running JAR files

For all the machines listed in mpj.conf, login to each Windows or Linux machine

java -jar hello.jar <rank> mpj.conf niodev

The <rank> argument should be 0 for process 0 and 1 for process 1. This should
match to what has been written in configuration file (mpj.conf). Check the entry
format in the configuration file to be sure of the rank.

Appendix C: Changing protocol limit switch

MPJ Express uses two communication protocols: the first is 'eager-send', which is used for
transferring small messages. The other protocol is rendezvous protocol useful for transferring
large messages. The default protocol switch limit is 128 KBytes. This can be changed prior to
execution in following ways depending on whether you are running processes manually or using
the runtime.

1. Running MPJ Express applications manually (without using runtime): The users may
edit configuration file (for e.g. smpJ HOME%/conf/mpj2.conf) t0 change protocol switch
limit. Look at the comments in this configuration file. The second entry, which should be
131072 if you have not changed it, represents protocol switch limit

2. Running MPJ Express applications with the runtime: Use -ps1 <va1> switch to change
the protocol switch limit

Appendix D: MPJ Express Testsuite

MPJ Express contains a comprehensive test suite to test the functionality of almost every MPI
function. This test suite consists mainly of mpiJava test cases, MPJ JGF benchmarks, and MPJ
microbenchmarks. The mpiJava test cases were originally developed by IBM and later translated
to Java. As this software follows the API of mpiJava, these test cases can be used with a little
modification. MPJ JGF benchmarks are developed and maintained by EPCC at the University of
Edingburgh. MPJ Express is redistributing these benchmarks as part of its test suite. The original
copyrights and license remain intact as can be seen in source-files of these benchmarks in
$MPJ_HOME/test/jgf_mpj_benchmarks. Further details about these benchmarks can be seen
here. MPJ Express also redistributes micro-benchmarks developed by Guillermo Taboada.
Further details about these benchmarks can be obtained here

Compiling source code and Testsuite
1. Compiling MPJ Express source code

a. Being in 2vps Homes directory, execute ant
Produces mpj.Jjar, daemon. jar, and starter.jar in1ip directory
2. Compiling MPJ Express test-code
a. cd test; ant This produces test.jar in 1ib directory.

Running Testsuite

The suite is located in smps _HoMES/tests directory. The test cases have been changed from their
original versions, in order to automate testing. Testsuite.java IS the main class that calls each of
the test case present in this directory. The build.xml file present in test directory, compiles all test
cases, and places test.jar into the lib directory. By default, JGF MPJ benchmarks and MPJ micro-
benchmarks are disabled. Edit svps HOME%/test/TestSuite.java t0 uncomment these tests and
execute them. Note, after changing restsuite.java, you will have to recompile the testsuite by
executing 'ant' in test directory.

1. ca mpj-user
With Runtime

1. Write a machines file

2. mpjrun.bat -np 2 -jar $MPJ HOME%/lib/test.jar

http://www.epcc.ed.ac.uk/
http://www.epcc.ed.ac.uk/
http://www.epcc.ed.ac.uk/javagrande/mpj.html
http://www.des.udc.es/~gltaboada/
http://www.des.udc.es/~gltaboada/micro-bench/index.html

Without Runtime

1. Write a configuration file called 'mpj.conf'. Further details about writing configuration
file and its format can be found here

a. Start the tests

For all the machines listed in mpj.conf, login to each Windows or Linux machine, type,

java -jar $MPJ HOME%/lib/test.jar <rank> mpj.conf niodev

The <rank> argument should be 0 for process 0 and 1 for process 1. This should match to
what has been written in configuration file (mpj.conf). Check the entry format in the
configuration file to be sure of the rank.

Appendix E: Useful scripts for MPJ Daemons

Following new scripts have been added in MPJ Express to check status of daemons or clean
daemons. Details of each script are outlined below:

mpjboot <machines_file>

This command will boot MPJ Express daemons at compute nodes specified in machines file.
-bash-4.1% mpiboot machines

[compute-0-2] MPJ Deamon started successfully with process id: 10504
[compute-0-5] MPJ Deamon started successfully with process id: 10225
-baszh-4.1%

mpjhalt <machines_file>

This command will halt MPJ Express daemons at compute nodes specified in machines file.

-bash-4.1% mpjhalt machines
[compute-0-2] MPJ Deamon stopped
[compute-0-5] MPJ Deamon stopped
-bash-4.1%

mpjstatus <machines_file>

This command will display current status of MPJ Express daemons at compute nodes specified
in machines file.

-bash-4.1% mpistatus machines

[compute-0-2] MPJ Deamon is running with process id: 11004
[compute-0-5] MPJ Deamon is running with process id: 20640
-bash-4.1%

mpjclean <machines_file>

This command will clean all java process at compute nodes specified in machines file.

-bash-4.1% mpiclean machines
[compute-0-2] EKilled all java processes
[compute-0-5] Killed all java processes
-bash-4.1%

mpjinfo <machines_file>

This command will display all java process at compute nodes specified in machines file.

-bash-4.1% mpiinfo machines

[2leem.akhtar @ compute-0-2] 11084 MPJDaemon 10050
[2leem.akhtar @ compute-0-5] 30352 MPJDaemon 10050
-bash-4.1%

mpjdaemon <query> <hostnames>

This command takes one of the following queries and will perform respective operation on
specified hosts

-boot: start MPJ Express daemons

-halt: stop MPJ Express daemons

-status: display current status of MPJ Express daemons
-clean: clean all java process

-info: display all java process

For example, this command will boot daemons at localhost.

-bash-4.1% mpjdaemon -boot localhost
[localho=st] MPJ Deamon started successfully with proceazss id: TEE3
-bazh-4.1%5

And this command will halt daemons at two hosts

-bash-4.1% mpijdasmon -halt compute-0-2 compute-0-5
[compute-0-2] MPJ Deamon stopped

[compute-0-5] MPJ Deamon stopped

-bash-4.1%

Mpjdaemon command can be used to directly perform daemon operations without specifying
machines file. Default value for hostname is set as localhost.

mpjdaemon.bat <query>

This command is for Windows Operating System and will perform respective operation on
localhost only. Following operations are available with this command.

-boot: start MPJ Express daemons
-halt: stop MPJ Express daemons
-status: display current status of MPJ Express daemons

For example to boot/start daemons, following command will be used

D:‘\work> mpjdaemon -boot
[localhost] MP] Deamon started successfully with process id: 5852

Or to halt/stop daemons, following command will be used
D:\work> mpjdaemon -halt
[localhost] MPJ Deamon stopped

Note that mpjdaemon.bat only work for localhost.

Appendix F: Switching to Old Collectives

MPJ Express supports running of parallel Java applications using two types of collective
primitives. Old collectives are implemented using linear algorithms and were used in earlier
versions (0.42 and previous) of MPJ Express. Improved collectives are implemented using
Minimum Spanning Tree (MST) and Bucket (BKT) Algorithms. In current version of MPJ
Express, new collectives are used by default. To switch back to old collectives follow these
steps:

1. Edit $MPJ HOME/conf/mpjexpress.conf file.
2. Change the value of mpjexpress.mpi.old.collectives from "fa1se" t0 "true".

3. Old collectives will be used in next launch of MPJ Express job.

