

MPJ Express: An Implementation of MPI in

Java
Windows User Guide

18
th
 July 2014

Document Revision Track

Version Updates By

1.0 Initial version document Aamir Shafi

1.1 A new device óhybdevô is added for executing parallel Java

applications exploiting hybrid parallelism.

Aleem Akhtar, Mohsan

Jameel, Aamir Shafi

1.2 A new device ónativeô is added for executing parallel Java

applications on top of a native MPI library.

Bibrak Qamar, Mohsan

Jameel, Aamir Shafi

1.3 Runtime updated and support for running Java

applications on non-shared file system added. New scripts

for daemons are also added.

Aleem Akhtar, Aamir

Shafi, Mohsan Jameel

1.4 Improved collective primitives are added in MPJ Express.

Some minor bugs are fixed

Aleem Akhtar, Aamir

Shafi, Mohsan Jameel

Table of Contents

1 Introduction .. 5

1.1 Configurations ... 5

1.1.1 Multicore configuration .. 6

1.1.2 Cluster configuration .. 6

2 Getting Started with MPJ Express ... 8

2.1 Pre-requisites .. 8

2. 2 Installing MPJ Express .. 9

2.3 Compiling User Applications ... 13

2.4 Running MPJ Express in the Multi-core Configuration ... 13

2.5 Running MPJ Express in the Cluster Configuration ... 14

2.5.1 Cluster Configuration with niodev ... 14

2.5.2 Cluster Configuration with hybdev .. 15

2.5.4 Cluster Configuration with native device (using a native MPI library) 15

2.6 Advanced Options to mpjrun.bat.. 24

3 MPJ Express Debugging..25

3.1 The mpjrun Script .. 25

3.2 Core Library ... 25

3.3 MPJ Express Daemons (Cluster configuration only) ... 25

4 Known Issues and Limitations ..26

5 Contact and Support ..27

Appendices ...28

Appendix A: Running MPJ Express on non-shared file system ... 28

Appendix B: Running MPJ Express without the runtime (manually) .. 28

Appendix C: Changing protocol limit switch ... 30

Appendix D: MPJ Express Testsuite .. 31

Compiling source code and Testsuite ... 31

Running Testsuite.. 31

Appendix E: Useful scripts for MPJ Daemons ... 32

Appendix F: Switching to Old Collectives .. 34

1 Introduction

MPJ Express is a reference implementation of the mpiJava 1.2 API, which is an MPI-like API

for Java defined by the Java Grande forum. The mpiJava 1.2 API is the Java equivalent of the

MPI 1.1 specification document (http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html).

This release of the MPJ Express software contains the core library and the runtime infrastructure.

The software also contains a comprehensive test suite that is meant to test the functionality of

various communication functions.

MPJ Express is a message passing library that can be used by application developers to execute

their parallel Java applications on compute clusters or network of computers. Compute clusters is

a popular parallel platform, which is extensively used by the High Performance Computing

(HPC) community for large scale computational work. MPJ Express is essentially a middleware

that supports communication between individual processors of clusters. The programming model

followed by MPJ Express is Single Program Multiple Data (SPMD).

Although MPJ Express is designed for distributed memory machines like network of computers

or clusters, it is possible to efficiently execute parallel user applications on desktops or laptops

that contain shared memory or multicore processors.

1.1 Configurations

The MPJ Express software can be configured in two ways, as shown in Figure 1. The first

configurationðknown as the multicore configurationðis used to execute MPJ Express user

programs on laptops and desktops. The second configurationðknown as the cluster

configurationðis used to execute MPJ Express user programs on clusters or network of

computers. The cluster configuration relies on devices for communication. Currently there are

four communication devices for the cluster configuration:

1. Java New I/O (NIO) device known as niodev : niodev is used to execute MPJ Express

user programs on clusters using Ethernet.

2. Myrinet device known as mxdev: mxdev is used to execute MPJ Express user programs on

clusters connected by Myrinet express interconnects. Currently mxdev is not supported

under windows.

3. Hybrid device known as hyb dev : hyb dev is used to execute MPJ Express user programs on

clusters of multicore computers.

http://www.mpi-forum.org/docs/mpi-11-html/mpi-report.html

4. Native device known as nativ e: native is used to execute MPJ Express user programs on

top of a native MPI library (MPICH, Open MPI or MS-MPI).

Figure 1: MPJ Express configurations

1.1.1 Multi core configuration

The multicore configuration is meant for users who plan to write and execute parallel Java

applications using MPJ Express on their desktops or laptopsðtypically such hardware contains

shared memory and multicore processors. In this configuration, users can write their message

passing parallel application using MPJ Express and it will be ported automatically on multicore

processors. We envisage that users can first develop applications on their laptops and desktops

using multicore configuration, and then take the same code to distributed memory platforms

including clusters. Also this configuration is preferred for teaching purposes since students can

execute message passing code on their personal laptops and desktops. It might be noted that user

applications stay the same when executing the code in multicore or cluster configuration.

Under the hood, the MPJ Express library starts a single thread to represent an MPI process. The

multicore communication device uses efficient inter-thread mechanism.

1.1.2 Cluster configuration

The cluster configuration is meant for users who plan to execute their parallel Java applications

on distributed memory platforms including clusters or network of computers.

As an example, consider a cluster or network of computers shown in Figure 2. It shows shows

six compute nodes connected to each other via private interconnect. The MPJ Express cluster

configuration will start one MPJ Express process per node, which communicates to each other

using message passing.

Application developers can opt to use either of the four communication devices in the cluster

configuration:

5. Java New I/O (NIO) device driver known as niodev

6. Myrinet device driver known as mxdev

7. Hybrid device driver known as hyb dev

8. Native device driver known as native

The Java NIO device driver (also known as nio dev) can be used to execute MPJ Express

programs on clusters or network of computers. The niodev device driver uses Ethernet-based

interconnect for message passing. On the other hand, many clusters today are equipped with

high-performance low-latency networks like Myrinet. MPJ Express also provides a

communication device for message passing using Myrinet interconnectðthis device is known as

mxdev and is implemented using the Myrinet eXpress (MX) library by Myricom. These

communication drivers can be selected using command line switches.

Modern HPC clusters are mainly equipped with multicore processors (Figure 3). The hybrid

device is meant for users who plan to execute their parallel Java applications on such a cluster of

multicore machines. Hybrid device transparently uses both multicore configuration and cluster

configuration for intra-node communication and cluster configuration (NIO device only) for

inter-node communication, respectively.

Figure 2: MPJ Express Cluster Configuration Targets the Distributed Memory Platforms Including

Clusters and Network of Computers

Figure 3: MPJ Express Hybrid Configuration Targeting Cluster of Multicore Machines

The fourth deviceτnative deviceτis meant for users who plan to execute their parallel Java

applications using a native MPI implementation for communication. With this device bulk of

messaging logic is offloaded to the underlying MPI library. This is attractive because MPJ

Express can exploit latest features, like support for new interconnects and efficient collective

communication algorithms, of the native MPI library. Under Windows, this device is currently

tested and supported for MS-MPIðas the underlying native MPI library.

2 Getting Started with MPJ Express

This section shows how MPJ Express programs can be executed in the multicore, cluster and

hybrid configuration

2.1 Pre-requisites

ω Java 1.6 (stable) or higher (Mandatory).

ω Apache ant 1.6.2 or higher (Optional): ant is required for compiling MPJ Express source

code.

ω Perl (Optional): MPJ Express needs Perl for compiling source code because some of the

Java code is generated from Perl templates. The build file will generate Java files from

Perl templates if it detects perl on the machine. It is a good idea to install Perl if you want

to do some development with MPJ Express.

ω A native MPI library (Optional): Native MPI library such as MS-MPI is required for

running MPJ Express in cluster configuration with native device.

ω Visual Studio (Optional): MPJ Express needs Visual Studio to build JNI wrapper library

for the native device.

2. 2 Installing MPJ Express

This section outlines steps to download and install MPJ Express software.

1. Download MPJ Express and unpack it

2. Assuming unpacked 'mpj express' is in 'c:\mpj', Right-click My

ComputerĄPropertiesĄAdvanced tabĄEnvironment Variables and export the following

system variables (user variables are not enough)

a. Set the value of variable MPJ_HOME as c: \ mpj [se e Fig 4, Fig 5 and Fig 6]

b. Append the value of variable Path as c: \ mpj \ bin [see Fig 7]

See the snapshots below

Figure 4: Right click on my computer and select Properties

Figure 5: Select Environment Variables to Add/Edit variables

Figure 6: Add MPJ_HOME as new Environment Variable

Figure 7: Append Path variable

3. For windows with Cygwin (assuming ómpj expressô is in óc:\mpjô)

 The recommended way to is to set variables as in Windows

 If you want to set variables in cygwin shell

export MPJ_HOME="c: \ \ mpj"

export PATH=$PATH:"$MPJ_HOME \ \ bin"

4. Create a new working directory for MPJ Express programs. This document assumes that

the name of this directory is ñmpj-userò.

5. Compile the MPJ Express library (Optional): cd % MPJ_HOME%; ant

2.3 Compiling User Applications

This section shows how to compile a simple Hello World parallel Java program.

1. Write Hello World MPJ Express program and save it as Hello World.java

2. Compile: javac - cp .; %MPJ_HOME%/lib/mpj.jar HelloWorld.java

2.4 Running MPJ Express in the Multi -core Configuration

This section outlines steps to execute parallel Java programs in the multicore configuration.

1. Assuming the user has successfully carried out Section 2.2 and Section 2.3

2. Running HelloWorld

Execute: mpjrun.bat - np 2 HelloWorld

3. Running test cases (Optional) [Test suite is provided with MPJ Express]

a. Compile (Optional): cd %MPJ_HOME%/test; ant

b. Execute: mpjrun.bat - np 2 - jar %MPJ_HOME%/lib/test.jar

import mpi.*;

public class HelloWorld {

public static void main(String args[]) throws Exception {

 MPI.Init(args);

 int me = MPI.COMM_WORLD.Rank();

 int size = MPI.COMM_WORLD.Size();

 System.out.println("Hi from <"+me+">");

 MPI.Finalize();

 }

}

2.5 Running MPJ Express in the Cluster Configuration

This section outlines steps to execute parallel Java programs in the cluster configuration with

three communication device drivers including niodev , hybdev and native .

2.5.1 Cluster Configuration with niodev

This section outlines steps to execute parallel Java programs in the cluster configuration with

niodev communication device driver.

1. Assuming the user has successfully carried out Sections 2.2 and 2.3.

2. Write a machines file stating machines name, IP addresses, or aliases of the nodes where

you wish to execute MPJ Express processes. Save this file as 'machines' in mpj - user

directory. This file is used by scripts like mpjboot , mpjhalt , mpjrun.bat and mpjrun.sh to

find out which machines to contact.

Suppose you want to run a process each on 'machine1' and 'machine2', then your

machines file would be as follows

machine1

machine2

Note that in real world, 'machine1' and 'machine2' would be fully qualified names,

IP addresses or aliases of your machine

3. Start the daemons: mpjdaemon.bat - boot

This should work if %MPJ_HOME%/bin has been successfully added to %PATH% variable. You

will need to run this command on each machine to start daemons. If logging is enabled

then each daemon produces a log file named daemon- <machine_name>.log in

%MPJ_HOME%/logs directory.

4. Running HelloWorld

Execute: mpjrun.bat - np 2 - dev niodev HelloWorld

5. Running test cases (Optional) [Test suite is provided with MPJ Express]

Execute: mpjrun.bat - np 2 ïdev niodev - jar %MPJ_HOME%/lib/test.jar

6. Stop the daemons: mpjdaemon.bat - halt

After you are done with executing all the programs, make sure that you halt the daemons

at each machine.

2.5.2 Cluster Configuration wit h hybdev

This section outlines steps to execute parallel Java programs in the hybrid configuration using

multicore and cluster configurations. Hybrid configuration depends on Multicore configuration

and Cluster configuration. Make sure that document sections 2.4 and 2.5.1 are completed

successfully.

1. Start the daemons: mpjdaemon.bat - boot

2. Running HelloWorld

Execute: mpjrun.bat - np 2 ïdev hybdev HelloWorld

3. Running test cases (Optional) [Test suite is provided with MPJ Express]

Execute: mpjrun.bat - np 2 ïdev hybdev - jar %MPJ_HOME%/lib/test.jar

4. Stop the daemons: mpjdaemon.bat - halt

2.5.4 Cluster Configuration with native device (using a native MPI library)

This section outlines steps to execute parallel Java programs in the cluster configuration with

native device.

1. Assuming the user has successfully carried out Section 2.2 and Section 2.3.

2. Since MPJ Express native device relies on a native MPI it is assumed that the user has

installed and tested the native MPI library. Better to run a simple helloworld like program

to test the native MPI. Currently MPJ Express is only tested on MS-MPI (under

Windows).

By design MPJ Express should work with any native MPI library. If you have a different

native MPI library installed on your system, please feel free to test it and let us know.

3. Compile the JNI wrapper library (Mandatory):

This requires Visual Studio to generate a dynamic library (nativempjdev.dll) to be used

by MPJ Express to interface with the native MPI library. Open Visual Studio and follow

the steps provided below:

a. FileĄNewĄProject: Create a Win32 Project with the name of nativempjdev

Figure 15: Create a Win32 Project with the name of nativempjdev

b. Click nextĄ set Application type as DLL and in Additional options tick Empty

project Ą finish

Figure 16: Set Application type as DLL and in Additional options tick Empty project

c. Right click on project nativempjdev in the Solution Explorer and go to

properties. Set Additional Include Directories

Figure 17: Set Additional Include Directories

d. Set Additional Library Directories in the Linker

Figure 18: Set Additional Include Directories

e. Set Additional Dependencies (msmpi.lib) in the Linker

f. Right click on óHeader FilesôĄAddĄExisting Itemé to add Header Files

Figure 19: Navigate to Header Files under the solution nativempjdev

g. Browse into %MPJ_HOME%\src\mpjdev\natmpjdev\lib and select the header

files (*.h)

Figure 20: Add header files

a. Right click on óSource FilesôĄAddĄExisting Itemé to add Source Files

Figure 21: Add source files

b. Right click on nativempjdev Solution and Build. This creates the dynamic library

(nativempjdev.dll)

Figure 22: Build

c. Install the newly created ónativempjdev.dllô. Copy from your

project\folder\x64\Release (or whatever x32\Release or \x64\Debug etc)

Figure 23: Copy nativempjdev.dll

d. Paste ónativempjdev.dllô into %MPJ_HOME%\lib

Figure 24: Paste nativempjdev.dll into %MPJ_HOME%\ lib

4. Running HelloWorld

Execute: mpjrun. bat - np 2 �±dev native HelloWorld

5. Running test cases (Optional)

a. Compile :

cd ñ%MPJ_HOME%ò/test/nativetest

compile.b at

b. Execute:
cd ñ%MPJ_HOME%ò/test/nativetest

runtest.bat

i. To supply a machine file provide full path in the first argument of this

script: runtest.bat /full/path/to/machinefile

Advanced Options:

Running directly with mpiexec to use options provided by native MPI library

This is for the advanced user who wants to run parallel Java programs using custom

options to the native MPI library.

