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Abstract 

 

Since its release in 1996, Java has become a popular software development 

language. The reasons for its popularity can be attributed to the easy-to-use 

syntax, its portability, the extensive set libraries, and the support of object-

oriented features like data hiding and polymorphism. One of the main 

drawbacks of Java was the blocking I/O package, but the situation has 

improved with the addition of the Java NIO package that adds scalable and 

non-blocking I/O to the language. The DSG is implementing a Java message 

passing system based on Java NIO package that runs on heterogeneous 

environment. In this report we discuss and evaluate our reference 

implementation, known as MPJ. 
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1 Introduction 
 

Cluster computing [1][2] has become a cost effective alternative to traditional 

HPC multi-processor systems for applications that have large-scale processing 

requirements. Shared memory and distributed memory are the two widely 

used programming paradigms for large-scale applications. The shared 

memory paradigm, as shown in the Figure 1, is used on hardware, where all 

the processors see a global memory space; this medium is the means of 

communication between the processors.  

 

 

Figure 1: The Shared Memory Paradigm 

 

In the distributed memory paradigm, as shown in the Figure 2, each node of 

the cluster has its own local memory that essentially means that there is no 

support for sharing data among nodes without explicitly passing messages 

between processors. On such hardware, message-passing libraries provide the 

communication medium between the processors. These libraries make use of 

the connecting networks to provide the communication medium and by 

sending and receiving messages; applications need to co-operate to solve a 

computational problem in parallel. At the programming level, the developer 

has to manage the data flow explicitly between the processors that are used.  

They have to know how to locate arrays of data, and when to set up the 

corresponding communicating calls between nodes participating in a 

computation. Further details about the two programming paradigms can be 

found in [3]. 
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Figure 2: The Distributed Memory Paradigm 

 

The Message Passing Interface (MPI) [4], first introduced in June 1994, is a 

standard for implementing message passing systems, which is used by the 

application developers for parallel computing over collection of machines. 

The current version of the MPI standard has language bindings for Fortran, C 

and C++. Two of the most popular libraries implementing the MPI standard 

are MPICH [5] and LAM [6] that support C/Fortran/C++ (LAM only) as the 

programming language. 

 

In the recent past, there has been a growing interest in developing a message 

passing system in Java, which resulted in a Java binding for MPI [7]. The 

current standard and non-standard (according to bindings defined in [7]) 

implementations primarily follow three approaches. The first approach uses 

JNI [9] to invoke routines of the underlying native MPI that acts as the 

communication medium. The second approach uses RMI [10], which is the 

Java API that allows remote method invocation of distributed objects. The use 

of low-level “pure” Java communications based on Java sockets is the third 

approach. This is the preferred way to build a Java messaging system as it 

achieves better performance because of the use of sockets instead of RMI and 

ensures a truly portable system.  

 

 8



Despite various experimental projects that have developed Java message 

passing systems in the past, there is currently no single implementation that 

follows the API defined in [7], performs comparably well as other C MPI 

libraries, and makes use of the features of the Java language. Thus, the 

motivation behind this project is to build a pure Java message passing system 

that implements the bindings defined in [7], ensures portability, supports 

object oriented approach and attains performance comparable to the best 

alternative, currently mpiJava [61][63].  

 

1.1 Project Objectives  

 

The objective of this project is to develop a reference implementation of a Java 

message passing system that follows the recommended standard API, which 

includes a runtime library and an infrastructure that can provide all the 

support needed by parallel applications. The system, known as MPJ, has a 

messaging API based on MPI and uses Java sockets as its means of inter-

process communications.   

 

1.2 Report Outline 

 

In Chapter 2, we discuss the motivation for this project, which is followed by 

a review of related work in Chapter 3. Chapter 4 and 5 discuss the design and 

implementation issues of MPJ. Chapter 6 evaluates the performance of MPJ 

and we conclude with an outline of potential future work in Chapter 7.  
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2 Project Motivation 
 

2.1 Introduction 

 

In this chapter, the motivation for developing MPJ is discussed. It starts with 

a discussion of some salient features of Java followed by a review of the Java 

New I/O package [11] (Java NIO). Java NIO adds scalable and non-blocking 

I/O to the Java language, which forms the basis for developing a scalable 

message-passing library. 

 

2.2 Java Message Passing 

 

There are two aspects of any language help judge its suitability for High 

Performance Computing (HPC). The first is the support for efficient 

numerical computing. Java is not best known for its support for this area due 

to the limitations imposed by the Java Virtual Machine (JVM). This is the layer 

that handles heterogeneity between different hardware and operating 

systems, at the cost of high performance numeric support.  A detailed 

discussion of this area can be found in [12]. The second important 

requirement is the support for efficient communication using the underlying 

network hardware.  

 

Bearing in mind this requirement, one may ask questions like, how long will a 

basic point-to-point message transfer between remote processes take? Also, 

how does this compare to the other popular languages, such as C or Fortran? 

As shown in Figure 8 and Figure 9, the point-to-point communication 

performance of Java is comparable to C. This indicates that a Java message 
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passing system would be capable of providing the application community 

with a tool that allows rapid application development and supports object 

oriented programming without compromising the communication 

performance. Such a tool would prove useful for teaching and simulation 

purposes too, where the motive is to learn and prove ideas without getting 

into the complex details of underlying hardware and software.  

 

2.3 Benefits of the Java Programming Language  

 

Since its release in 1996, Java has become an increasingly popular software 

development language. The reasons for its popularity can be attributed to its 

easy to use syntax, portability, the extensive set of libraries and the support of 

object oriented features like data hiding, and polymorphism. This sub-section 

discusses the advantages and disadvantages of the Java language in the 

context of HPC. 

 

2.3.1 Portability 

 

The most attractive feature of applications written in Java is that they are 

portable to any hardware or operating system, provided that there is a JVM 

for that system; following Sun’s philosophy for Java of writing once and 

running anywhere. Java programs run in the JVM, which handles the 

complexity of dealing with the underlying hardware and operating system 

characteristics. The contribution of the JVM is significant, keeping in mind 

that it allows the new programmers and scientists to focus on issues related to 

their application and domain of interest and not on system heterogeneity. 
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2.3.2 JIT Compilers 

 

The performance of the Java language suffered during its initial years because 

the JVM executed the bytecode that is generated by the Java compiler (javac). 

An alternative, and the more efficient approach, is to execute the native 

machine code as one would with the likes of C and Fortran. The pre-requisite 

for this is to convert the bytecode into the native machine code. This is what 

JIT (Just In Time) compilers are meant to do. These compilers first convert the 

bytecode into the native machine code and later execute the native machine 

code. A more detailed discussion on JIT compilers can be found in [13]. 

 

2.3.3 An Object Oriented Language 

 

The Java language includes a large set of libraries that can be reused by the 

application developers in their parallel applications. It automatically brings 

the concept of object oriented programming, which may prove significant in 

terms of designing applications. This is complimented by the fact that the 

syntax of Java is easy to use for new programmers when compared to other 

languages such as C or Fortran. Code type safety is yet another feature that 

helps a beginner to avoid syntactic bugs in their code. 

 

2.3.4 The Java New I/O Package 

 

A hindrance in the development of a scalable pure java message-passing 

library has been the blocking I/O package of java. In the standard Java I/O 

package, a server requires a thread to handle the read and write operations of 

each I/O channel. Such a mechanism to handle I/O may become a 

performance bottleneck in long running applications or ones having a large 

number of processes. Figure 3 shows this problem where all processes are 
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connected to each other and each process requires a thread to handle an I/O 

channel for every connected process. This approach may not scale well given 

the large number of nodes in the modern clusters these days. 

 

 

Figure 3: A Thread per I/O Channel at each Process 

 

In this sub-section, we discuss the salient features of the Java New I/O 

package. 

 

2.3.4.1 Selectors and SocketChannels 

 

In Java NIO, there is an abstraction for a socket, called socket channel. These 

channels register with a selector, which is normally a separate thread in the 

JVM that is responsible for handling all the non-blocking I/O. Whenever there 

is something to read from a particular socket channel, the selector generates a 

matching read event, which can be handled and does the actual read. This 

concept is similar to select() in C, which helps scalable and efficient I/O. 

Figure 4 shows how the selectors solves the problem of needing a separate 

thread for each I/O channel. The number of channels are the same as in Figure 

3, but now the receiving process potentially only needs the selector thread to 

handle all I/O channels, unlike Figure 3, where each process needs two 

threads to handle two I/O channels. 
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Figure 4: Single Selector Thread at Each Process 

 

2.3.4.2 The Buffering API 

 

Another useful feature of Java NIO is the buffering API. Here a buffer has the 

notion of being either direct or indirect, this concept was first conceived in the 

Jaguar project [14]. A direct buffer is a chunk of memory in the operating 

system’s address space. It is not subject to garbage collection, as this does not 

reside like conventional objects, on the JVM heap. On the other hand, an 

indirect buffer is like any Java object that is created on the JVM heap. Direct 

and indirect buffers are shown in Figure 5. 

 

JVM JVM

Heap Heap

Operating System Operating System

Direct Buffer

Indirect
Buffer

Memory

Direct Buffer Indirect Buffer

 

Figure 5: A Direct and an Indirect Buffer  
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The documentation for the Java NIO [4] buffer API suggests that creation of 

direct buffers is costly in terms of creation time. However, it provides faster 

I/O as it is managed by the operating system instead of the JVM itself. A 

comparison between creating a direct and indirect buffer, and time to copy N 

bytes onto a direct/indirect buffer is shown in Figure 6 and Figure 7.  

 

 

Figure 6: A Comparison between Direct and Indirect Buffer Allocation Times 

 

The graph in Figure 6 shows a plot of the time taken in creating a fixed size 

buffer as a function of buffer size. As the documentation suggests the time 

taken in creating a direct buffer should be higher than the time taken to create 

an indirect buffer of the same size. As we can see in Figure 6, the time taken to 

create an indirect buffer actually takes less time until the buffer size reaches 

128 Kbytes. Theoretically, the indirect buffer should still take less time, but in 
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practice it does not, as the time taken is dependant on the garbage collection, 

which is taking place in the background. On the other hand, the direct buffer 

takes predictable creation time with little variation because these buffers are 

not subject to garbage collection.  

 

 

Figure 7: A Comparison between Direct and Indirect Buffer for copying N 

bytes 

 

The graph in Figure 7 shows the time taken for copying N bytes onto the 

buffer. It is clear that the direct buffer is taking less time until the message size 

reaches 128 Kbytes, and after this point, the difference is negligible. Thus, the 

rule of thumb is to use direct buffers in the case where the buffers are reused 

frequently in the application. Such re-use would ensure faster I/O and prevent 

memory leaks that may occur because the direct buffers are not allocated on 

the JVM heap and are not subject to garbage collection. This means that the 
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JVM requests the underlying operating system to get the memory and it is not 

possible for the JVM to check the availability of the memory before requesting 

it. Thus the frequent creation of a direct buffer may cause the system to crash 

and is not recommended. On the other hand, if there is a need to frequently 

create buffers, then the use of indirect buffers is recommended. 

 

The Buffer API has a corresponding buffer class for each of Java’s basic 

datatypes that extends the base Buffer class. ByteBuffer is the corresponding 

class to byte datatype. The use of this class is recommended for building a 

message passing system because it has to support the transfer of all basic 

datatypes and Java objects. Java objects can be serialized to byte arrays before 

storing them onto the ByteBuffer class. Moreover, the read and write 

methods of the SocketChannel class only transfer data to and from the 

ByteBuffer class respectively.  

 

The super-class Buffer provides three utility variables, called index, limit, and 

capacity. When the buffer is created, limit is undefined, capacity is the 

argument provided to the allocate method called for the creation of a buffer, 

and index is set to zero. For example, copying four bytes onto the buffer 

would set the index to four. To read the bytes copied onto the byte buffer, a 

utility method flip() is called, which sets the limit to the current index, and 

sets the index to zero. There are other utility methods like clear() and 

rewind() too. A detailed discussion of the Buffer API can be found in [16][15].  

 

2.3.5 The Improved Performance Provided by Java I/O  
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NetPIPE [17] is a network protocol independent performance evaluation tool 

originally developed by Ames Laboratory [18]. NetPIPE provides information 

about the time required to transmit a given data block of a certain size to its 

destination, the maximum attainable throughput by an application, the 

maximum throughput for a given data block size, the communication 

overhead due to the legacy protocol stacks, and the latency of a 

communication protocol associated with a network interface. NetPIPE uses 

ping-pong like transfers for each data block. It increases the transfer block size 

from a single byte to larger blocks until the transmission time exceeds one 

second. Specifically, for each block size c, three measurements are taken for 

block sizes c-p bytes, c bytes and c+p bytes, where p is a perturbation 

parameter with a default value of three. This allows the examination of block 

sizes that are possibly slightly smaller or larger than an internal network 

buffer. The Java version of NetPIPE supports only the TCP protocol using the 

Java I/O package. For the purpose of our performance evaluation, we 

implemented the TCP protocol module using the Java New I/O package. This 

driver is used for the comparison shown in Figure 8 and Figure 9. 
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Figure 8: Transfer Time Comparison of Java Versus C (Netpipe benchmarks) 

 

 

Figure 9: Bandwidth Comparison of Java Versus C (Netpipe benchmarks) 
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As can be seen in Figure 8 and Figure 9, the Java NIO driver performs equally 

well as the C driver. The latency, which we define as “the time taken in 

transmitting a single byte from the sender to the receiver” for both the 

drivers, is 62 microseconds. The peak bandwidth achieved by both the drivers 

is approximately 90 Mbps. A detailed discussion on the comparison can be 

found in [19]. The comparison shown in Figure 8 and Figure 9 provide 

evidence to the hypothesis made in Section 1.1 that a message passing system 

in Java would potentially provide the same performance as C.  

 

2.3.6 Summary 

 

In this chapter, the motivation for developing a message passing system has 

been discussed. Java has come a long way, and the release of the NIO package 

has added much-needed functionality for Java developers. Java NIO provides 

a scalable non-blocking I/O and a Buffer API that supports the transfer of the 

basic data-types as well as the Java objects.  The comparison presented in 

Figure 8 and Figure 9 show that the Netpipe drivers for Java and C perform 

approximately the same. This point-to-point comparison presented so far is a 

simple one, and to assume that a message-passing library in Java will perform 

as well as C is still in question, but nonetheless it is encouraging to implement 

such a system using Java.  
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3 Background and Review 

 

3.1 Introduction 

 

In the past, there has been a significant amount of effort in developing Java 

message passing systems. Most of the systems were experimental and are no 

longer supported or in other cases, the software is not available. In this 

chapter we first discuss the pros and cons of each of the approaches taken to 

develop such message passing systems, and then we categorize each of the 

projects as past or present ones. The approaches used to implement a Java 

messaging system can be divided into three categories.  

 

3.1.1 Using Remote Method Invocation (RMI) 

 

Remote Method Invocation (RMI) is a Java API that allows the programmers 

to invoke methods on distributed remote objects. RMI uses sockets as the 

underlying communication medium and is primarily meant for client server 

interactions rather than the distributed peer processes. RMI can save a lot of 

programming time and effort for the developers of a message passing system, 

but is not the best option because of the performance issues associated with 

RMI. One of the reasons for these issues includes sending the basic data-types 

as objects, because all the arguments to the remote methods should be 

serializable. Secondly, at least one RMI registry should be running to locate 

distributed objects. The address and port of the RMI registry needs to be 

known to all processes that have to query the registry to locate distributed 

objects. J. Maassen et al in [20][21] discuss the performance issues associated 

with the RMI package in detail.  
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3.1.2 Using the JNI 

 

The JNI (Java Native Interface) is a Java API that allows programmers to call 

C routines from their applications. Often developers of message passing 

systems use this package to interface their Java code to an underlying native 

MPI implementation. This technique saves a lot of additional programming 

and testing efforts but does not result in a portable code, which is the primary 

reason for implementing a message-passing system in pure Java.  JNI also 

introduces an additional copying of the data between the Java and the native 

MPI code. This overhead is discussed in detail here [23]. Moreover, using JNI 

breaks the programming model of Java because there is no way to ensure 

code type safety. It also may lead to memory leaks because in C unlike Java, 

the programmer is responsible for allocating and freeing the memory.   

 

3.1.3 Using Sockets 

 

The most appropriate way to implement a Java message-passing library is to 

use sockets. This approach is considered to be a low level approach but 

ensures a portable and an efficient solution that is an important requirement 

of application developers. Java allows access to these sockets through two 

packages. The first one is the standard Java I/O package, which does not scale, 

as there is no support for non-blocking I/O. The second package is the Java 

NIO that has recently been introduced and provides programmers with non-

blocking and scalable I/O.   
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3.2 Related Projects 

 

In this section we discuss the Java based messaging systems. It was important 

to review each of these projects critically in order to learn from them and 

experiences they gained in order to avoid reinventing the wheel or the 

mistakes that they made. We have divided the projects into current (active) 

and past (in-active) sub-sections. 

 

3.2.1 Past Projects 

  

This sub-section discusses the projects that were developed in the past and 

are no longer active.  

 

3.2.1.1 JavaMPI 

 

JavaMPI [24][25] developed by University of Westminster [26] was the first 

attempt to provide a Java binding to MPI. JavaMPI was based on a set of 

wrapper functions to the native MPI implementation using the NMI (Native 

Method Interface) that has been replaced with JNI in the later releases of the 

JDK (Java Development Kit). 

 

This system made use of a Java-to-C Interface generator (JCI) to produce the 

necessary C and Java method declarations files. Using JCI, the system 

generates similar files for the native MPI library. The native method declared 

Java file generated contained the interface used in the Java parallel 

application. The automatic generation of the Java bindings using the native 

MPI library resulted in an almost compatible Java binding to the MPI-1 

specification. The library came with shell scripts to help start the parallel 
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processes over the remote hosts. Making use of the JCI tool saved 

programming effort but did not result in a portable solution. The source-code 

of this system is no longer available.   

 

3.2.1.2 MPIJ  

 

MPIJ [28] developed as part of Distributed Object Group Management 

Architecture [27] at Brigham Young University [29], was an implementation 

of MPI in Java. MPIJ implemented a large subset of the MPI-1 standard. This 

project used RMI as the communication medium, though the primitive data-

types were passed using the native marshalling. This technique allowed 

efficient transfer of the primitive data-types as well as Java objects. One of the 

interesting features of this library is the applet-based execution of the parallel 

processes. This relieves the administrator of the manual installation of the 

software. A more useful and realistic approach would have been to allow 

remote installation of the software from one machine. The software for this 

library is no longer available. 

 

3.2.1.3 JMPI 

 

JMPI [30] was an experimental implementation of MPI developed at the 

Architecture and Real-Time Lab at the University of Massachusetts [31]. This 

library implemented a large subset of MPI’s functionality. It used RMI as the 

communication medium and supports the transfer of Java objects using the 

object serialization. This library supported the transfer of multi-dimensional 

arrays through the use of Introspection. Recognizing the performance issues 

with the RMI, KaRMI [32] has also been tried as the underlying 

communication medium. The library had no runtime infrastructure to 
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support bootstrapping parallel processes on remote hosts. The software for 

the project is available at [33]. The architecture of this system is shown in 

Figure 10. 

 

Java MPI Application 
Message Passing Interface API 

Communications Layers 
Java Virtual Machine 

Operating System 

Figure 10: The Structure of JMPI 

 

3.2.1.4 jmpi  

 

jmpi [34] was a pure Java implementation of MPI-1 developed by Kivanc 

Dincer at Baskent University [35]. It was built on top of JPVM [36], which is a 

library that conforms to the PVM and is implemented in Java using the UDP 

sockets. This made jmpi unique in a sense that it was the only MPI library in 

Java that uses UDP as the underlying communication protocol, as opposed to 

using TCP. The MPI standard does not dictate the underlying communication 

protocol. 

 

jmpi implements most of MPI’s functionality, including support for derived 

datatypes, virtual topologies, attribute caching, as well as  the point-to-point 

and the collective communication. A layered view of jmpi is shown in Figure 

11. The source-code for this library is no longer available. 

Collective Communications 
Point-to-Point 

Communications 
JPVM Communication Layer 

Java Virtual Machine 
Operating System 

Figure 11: The Structure of jmpi 
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jmpi came with an instrumentation, analysis and visualization tool called 

JPVS (Java based Performance Visualization System) that allows application 

developers to monitor the progress of their applications and find out the 

performance issues, if any. This was the first attempt at providing a profiling 

tool for Java based messaging systems. Other tools that have been developed 

as part of C MPI libraries for debugging and profiling cannot be used with 

Java message passing systems, because these are not portable. An 

architectural view of JPVS is shown in Figure 12 taken from [37]. 

 

 

Figure 12: The Java based Performance Visualization System (JPVS) [37] 

 
 
3.2.1.5 JMPI 

 

According to [38], “JMPI is a commercial effort underway at MPI Software 

Technology, Inc. to develop a message-passing framework and parallel 

support environment for Java. It aims to build a pure Java version of the MPI-
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2 standard specialized for commercial applications”. Nor the software and 

neither any paper related to this project is available. 

 

3.2.1.6 JUMP and PJMPI 

 

JUMP and PJMPI [39] were two Java messaging systems developed by the 

Distributed and High-Performance Computing (DHPC) [40] at University of 

Adelaide [41]. According to [39], it is not always sensible to follow MPI 

standards for messaging systems in Java because they were written with 

procedural languages like C and Fortran in mind. For this reason, the project 

developed two flavours. One was PJMPI that follows the MPI standards. The 

other was JUMP, which was build upon Java object oriented features and did 

not strictly conform to the MPI standard. One of the interesting features of 

these libraries was that they come with a runtime infrastructure that allowed 

spawning parallel processes on remote hosts. This runtime infrastructure was 

based on RMI, and once the processes were started, the communication may 

take place using the sockets or RMI. The software for this project is not 

available. 

 

3.2.1.7 JMPF  

 

JMPF [42] was a Java message-passing framework developed by collaboration 

between Queensland University of Technology [43] and Centre of 

Development of Advanced Computing [44]. This framework was based on 

standard Java I/O package and used sockets as the communication medium. 

The authors argued in [42] that it was not easy for processes to keep a track of 

port and socket information regarding each of the process, thus they had 

devised a new abstraction called ports that allowed the management of 
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communication information like finding the address and the port number 

where the other process were listening. According to the MPI standard, the 

communicator deals with the complexity of managing the addresses and the 

port number, and the application developer has to only know the ranks of the 

processes and the total size of the communicator. JMPF did not follow the 

MPI standard, in fact was not even MPI-like. 

  

The architecture of the JMPF is shown in Figure 13. The server was the entity 

that managed the so-called ports, and the clients got the relevant port 

information from the server and then communicated directly with other 

clients. The source code for this library is available [45] but this project is no 

more active. 

 

Server Client Client

Connecting Network
 

Figure 13: The Architecture of JMPF 

 
 
3.2.1.8 JMPP  

 

JMPP [46] was a message-passing package developed by National Chiao-

Tung University [47]. This package was based on RMI and implemented the 

most of the MPI standard. The interesting feature of this library was the 

layered approach. In the reference implementation, the communication layer 

called ADI (Abstract Device Interface) used RMI but could be replaced with 
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other communication medium like sockets. Another interesting feature of this 

library was that it implemented two transfer protocols to support four modes 

of communication that are mentioned in the MPI standard. A so-called short 

protocol supported the standard and ready modes, whereas a so-called long 

protocol supported synchronous and buffered modes of message passing. The 

architecture of this library is shown in Figure 14. 

 

MPI Classes 
ADI 
RMI 

Java Virtual Machine 
Operating System 

Figure 14: The Architectural View of JMPP 

 

3.2.1.9 PJMPI  

 

PJMPI [48] was a pure java implementation of the MPI standard developed at 

Shanghai University [49]. This library was based on the standard Java I/O 

package. A server socket was started at each of the participating node, which 

accepted incoming connections to form a point-to-point connection. 

DataInputStream and DataOutputStream were used to access the sockets for 

writing and reading respectively. The Java objects were communicated using 

the derived datatypes feature of the MPI standard. An interesting feature of 

this library was the runtime infrastructure. The library had a daemon called 

PJMPI daemon that ran over each of the machine that wished to participate in 

the overall execution of the parallel application. The status of the daemon 

could be checked visually from the client machine that was used to start up 

the process through a GUI called PJMPI control centre. Dynamic class loading 

was used to load the classes into the daemon machines JVM for execution. 

The software for this project is not available. 
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3.2.1.10 MPJava  

 

MPJava [50] was a message-passing library that was implemented using the 

Java NIO package by The University of Maryland [51]. This package 

demonstrated that Java messaging systems based on NIO achieves 

performance comparable to that of C or Fortran message passing libraries. 

The runtime infrastructure consists of shell scripts that allowed processes to 

be started Linux-based nodes.  

 

Figure 1, in [50], shows the ping-pong performance comparison between the 

java.io (bytes), java.io (doubles), MPJava and LAM-MPI 6.5.8. It shows that 

the LAM-MPI implementation attained greater throughput than MPJava for 

message sizes up to about 1000 doubles. For message sizes larger than 7000 

doubles, MPJava attained a greater throughput than LAM-MPI. These results 

are suspicious because a Java messaging system cannot perform better than a 

C message passing system. The reason is that both C and Java use the 

underlying operating system TCP stack to communicate over the network, 

but Java adds an additional layer, which is the JVM. As a message passing 

system developer, we aim to keep the overhead of this additional layer 

minimal but it cannot be avoided. The test environment consisted of a cluster 

of Pentium III running Red Hat Linux 7.3. The Linux kernel used on the nodes 

is not mentioned in the paper, but there are some known performance issues 

of LAM-MPI with the Linux kernel 2.2.x.  Further details about this can be 

found in [52]. The source code of MPJava has not been released publicly. 
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3.2.1.11 CCJ 

 

CCJ [53] was a MPI-like message-passing library implemented on top of RMI 

developed at Vrije Universiteit Amsterdam [54]. This library did not strictly 

follow the MPI API in order to make use of the object-oriented features of the 

Java language. This library supported the transfer of the Java objects, as well 

as the basic data-types. Group communications had been implemented using 

the Java’s multi-threading model, where a thread used scatter/gather like 

operations to send not only the arrays but also the Java objects to all the other 

threads within the same thread group. The library could also use Manta [22], 

which uses Myrinet as the underlying networking hardware. The benchmarks 

presented in the paper [53] show the overheads incurred using standard RMI. 

 

3.2.2 Present Projects (Active Projects) 

 

In this sub-section, we discuss each of the currently active projects briefly. We 

also discuss some of the projects that are using these Java messaging systems. 

 

3.2.2.1 M-JavaMPI 

 

M-JavaMPI [55] is a messaging system developed at The University of Hong 

Kong [56] that uses JNI to interact with underlying native MPI library. One of 

the important features of this library is that it supports process migration 

using the JVMDI (JVM Debug Interface) [57].  Figure 15 shows that the Java 

MPI program is compiled into the bytecode, which is modified by the pre-

processing layer to insert state restoration code as the try-catch block. The 

Java-MPI API layer provides the necessary MPI functionality. This layer acts 
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as a client to the messaging layer (Restorable MPI Layer) that is responsible 

for delivering messages. The migration layer allows capture and saving of the 

execution state for later execution. The migration layer also handles the 

reconstruction of the communication channels in case a fault occurs. 

 

Java MPI Program 
Pre-Processing Layer 

Java-MPI API Java API 
Migration Layer 

JVMDI 

JVM 

Restorable MPI Layer 

Native MPI 

OS 

Hardware 

Figure 15: A Layered View of M-JavaMPI 

 

The support for process migration is important for many applications because 

a minor fault may result in hours of wasted computation. Currently in J2SE 

1.5, JVMDI [57] is deprecated in favour of JVMTI (JVM Tool Interface) [58], 

which means that JVMDI will be removed from the next major release. This 

essentially means that a part of this system will have to be re-written to make 

use of the new debugging interface. The source-code for this project is 

available [59]. This project has been subsumed into another project G-

JavaMPI, a middleware for the Grid having support for process migration 

[60]. 

 

3.2.2.2 mpiJava 

 

mpiJava [61] is a Java messaging system that uses JNI to interact with the 

underlying native MPI library. The project started in 1997 at NPACI (Syracuse 

University [64]), later moved to University of Florida [65] and is currently 
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being pursued at the Indiana University [66], with one of its collaborators in 

the Distributed Systems Group, University of Portsmouth [67]. This project is 

not strictly following the MPJ API specification [63], but it is slowly moving 

towards the standard. 

  

During the implementation of earlier versions of the software, some conflicts 

between the JVM and the underlying MPI implementation were reported but 

the situation has improved with the evolution of the JVM. Initial versions of 

this software transferred only the primitive data-types, but the current 

version supports the transfer of Java object through the automatic 

serialization. [62].  mpiJava uses Perl wrapper scripts of the native MPI scripts 

to remotely start the execution of the processes on the remote nodes. 

 

More recently, a native mpjdev (Native MPJ device driver) has been written 

in order to separate the implementation logics of mpiJava from the point-to-

point and collective communications layers. This essentially means that the 

mpjdev driver developed in pure Java can be plugged into the already 

developed point-to-point and collective communications layer.  

 

mpiJava has been widely used by the Java developers and HPC community. It 

is used as a teaching tool [76], a library that supports the development of 

performance measurement and analysis systems of parallel applications [71], 

and for simulating parallel applications [74][75]. Some in the community has 

found it hard to install [72] and some have provided execution helper scripts 

[70] to run it.  
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3.2.2.3 MPP 

 

MPP [77] is an implementation of a subset of the MPI standard using Java 

NIO. This system has been developed at University of Bergen [78] as part of a 

larger project called Matrix Toolkits for Java (MTJ). Though MPP is built 

using Java NIO, it does not make use of the selectors to perform non-blocking 

I/O. In the non-blocking functions, a separate thread is started to handle 

communications. On the other hand, it does make use of the buffering API 

provided by Java NIO to support the transfer of primary data-types only. 

According to [77], MPP achieves 10 Mbytes/s over a 100 Mbps connection, 

and over 100 Mbytes/s over 1 Gbps connection. The runtime infrastructure 

consists of a shell script that uses SSH utility to start the processes on remote 

nodes. 

 

3.2.3 Summary 

 

In this chapter we have reviewed current and past Java message-passing 

systems. It is clear that the only real choice for application developers who 

want to port/develop their applications in Java is mpiJava. As mpiJava uses 

the native MPI as the communication medium, the application developers 

cannot benefit fully from the portability of Java. Moreover, JNI has 

drawbacks, which restricts the performance of mpiJava.  
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4 MPJ Design 

 

4.1 Introduction 

 

In this chapter the layered design of MPJ and its runtime are discussed. This 

chapter also outlines the design goals and associated issues. 

 

4.2 Design Goals 

 

The high-level design goals of MPJ are: 

• Portability,  

• Standard Java – we assume no language extensions,  

• High-performance, 

• A modular architecture, that is layered and has support for pluggable 

drivers for specialised devices. 

• Support for the object oriented programming paradigm that allows 

application developers to program their applications at a higher level of 

abstraction. 

 

4.3 Generic Design 

 

MPJ is structured into a layered design to allow incremental development, 

and provide the capability to update and swap in/out layers as needed. Figure 

16 shows the layered structure of MPJ.  
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High Level MPJ Collective operations 
Process topologies 

 
Base Level MPJ 

All point-to-point modes 
Groups 
Communicators 
Datatypes 

 
MPJ Device Level 

isend, irecv, waitany, . . . 
Physical process ids (no groups) 
Contexts and tags (no 
communicators) 
Byte vector data 
Buffer packing/unpacking 
JNI Wrapper 

 
Communication medium 

Java NIO and Thread APIs 
Native MPI 
Specialised Hardware Library (For 
e.g. VIA communication primitives) 

 
Process Creation and 
Monitoring 

MPJ service daemon 
Java Reflection API to start processes 
Dynamic Class loading 

Figure 16: The Layered Structure of MPJ 

 

Figure 16 shows a generic layered view of the messaging system. The high       

and low-level layers rely on the MPJ Device level for actual communications 

and interaction with the underlying networking hardware. In other words, 

the MPJ Device level acts as a driver for different networking hardware, 

represented by the communication primitives layer that can be Java NIO, 

native MPI or some specialised communications library.  

 

4.4 Instantiation of MPJ Design 

 

Figure 17 shows an instantiation of the MPJ structure containing three 

different devices. 
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Figure 17: The Layered MPJ Design Showing Three Devices 

 

4.4.1 Infrastructure 

 

The bottom five layers of Figure 17 form the MPJ infrastructure, which is 

based on the concept of device drivers that is similar to that of MPICH [5]. 

MPICH uses various different communication devices, for example, ch_p4 is 

the communication device for BSD sockets, on top of which higher-level 

operations like point-to-point and collective communications are 

implemented. Using this approach, different drivers can be implemented for 

different devices, for example Java NIO, Java I/O, VIA (Virtual Interface 

Architecture) or native MPI. This also allows switching between various 

communication devices at runtime. The Java NIO device driver (hereafter 
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referred to as “mpjdev”) uses TCP sockets through the Java NIO package as 

the communication medium. The native MPI device driver (hereafter referred 

to as the “native mpjdev”) uses the JNI package to interact with the native 

MPI implementation. The VIA device driver uses the JNI to communicate 

with the VIA library. We envisage that in some cases, user will prefer to use 

the native mpjdev, which may perform better if there is some specialised 

hardware such as Myrinet/Infiniband/VIA. 

 

4.4.2 Messaging API 

 

The top three layers in Figure 17, the MPJ API, collective communications and 

point-to-point communications form the messaging API. The high-level 

messaging API provides an interface for the application developers to use. 

This interface hides all the underlying implementation details from users. The 

messaging API consists of the point-to-point communications, collective 

communications, and some utilities like communicators, process topologies, 

and derived datatypes. Table 1 shows an instantiation of the MPJ structure 

using mpjdev as the only communication device. 

  

 

 

 

 

 

 

 

 38



MPJ Point to Point and Collective communication: This layer manages 
communicators, provides virtual topologies, point-to-point and collective 
communication operations. 

The Java New I/O device driver (mpjdev): mpjdev is implemented using 
the New I/O package. This layer is responsible for starting the device, 
providing a way for other similar devices to connect to it and connecting to 
other devices. This layer gets the configuration information from the 
runtime, For example, ports to bind the server socket to, rank of this 
processes, ranks of other processes, machine name/IP and ports of other 
processes. 

Java Virtual Machine and Java libraries: This layer is the Java runtime that 
is required to execute Java programs. This layer provides the support for 
non-blocking I/O through the Java New I/O package. 

Operating System (Linux/Windows) 

Table 1: The Structure of Messaging API Using mpjdev 

 

4.5 Design Constraints 

 

A device driver implements a buffer packing/unpacking API because it is not 

possible to write the basic datatypes and objects into an open socket. Instead, 

the data is first copied onto the buffer and then a reference to this buffer is 

passed to the socket. The buffering API supports three types of read and write 

methods; write()/read(), scatter()/gather(), and multi-stride scatter 

and gather methods. These operations form the basis for supporting gather 

and scatter methods at the collective communications layer. 

 

4.6 The Runtime Infrastructure 

 

A runtime infrastructure solves the problem of starting the execution of the 

parallel application as multiple processes. There processes may execute over a 

cluster of nodes, or workstations present in LAN. Such an infrastructure is 
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necessary for a messaging system, as it is impossible for the user to login to 

each of the participating node, and start the process manually. We have 

divided the runtime infrastructure into two modules. The first module is the 

initiator module that allows the user to initiate the execution of the parallel 

application. The second module is the daemon module, which runs over the 

nodes that wish to participate in the overall execution. Figure 18 shows the 

interaction between the initiator and the daemon module. 

 

Daemon Module

Initiator Module
mpjrun -np 2 Test

Daemon Module Daemon Module

 

Figure 18: The Interaction of Runtime Modules 

 

As part of MPJ, we have implemented a secure runtime infrastructure that 

allows a user to run the MPJ application over the remote nodes. This portable 

infrastructure allows different operating systems running on different 

hardware platforms to participate in the overall parallel job.  
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Figure 19: The Design of the Runtime Infrastructure 

 

Figure 19 shows the layered structure of the runtime infrastructure. The 

initiator module runs on the node that starts the execution of the application. 

The daemon module runs on the nodes that are able to execute the processes. 

We discuss each layer of the runtime infrastructure in the sub-sections below. 

 

4.6.1 Layer 1 (Authentication) 

 

The authentication layer resides at the bottom of the runtime infrastructure 

because the first and foremost requirement is to authenticate user. 

 

4.6.2 Layer 2 (Dynamic Class Loading) 

 

Once the user has been authenticated, the next layer of the module 

downloads the binaries from the user machine so that they may be executed 

on the daemon node. We do not assume a shared file system, hence a 

dynamic class loading is required that is shown in the layer 2 of Figure 19. 
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4.6.3 Layer 3 (Execution of the process) 

 

After layer 2 has loaded the binaries onto a node, the daemon executes the 

user MPJ job. The standard I/O and error streams are redirected to the user 

machine so that user may view any output or errors that the application may 

be producing.  

 

4.7 Summary 

 

In this section, the design of MPJ and its runtime infrastructure is discussed. 

MPJ has been structured to hide the implementation details from the 

application developers. Moreover, the design allows the application 

developers to choose amongst various communication devices. It is possible 

for other developers to add new communication devices to the MPJ library. 

The runtime infrastructure is layered in three main layers that form the basis 

of the interaction between the initiator and the daemon modules. 
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5 Implementation of MPJ 

 

5.1 Introduction 

 

This chapter discusses the implementation of MPJ. This chapter is divided 

into two sections that describe the implementation of mpjdev device driver 

and the runtime infrastructure. 

  

5.2 The Implementation of mpjdev 

 

The primary functionality provided by the device driver is the 

implementation of various communication protocols and buffering that 

allows the users to pack and unpack their data to/from the NIO buffers. Two 

packages have been implemented as part of the development of the mpjdev 

API. One package is mpjdev, which contains a Java NIO device driver, having 

a selector thread that assists in the non-blocking I/O. The second package is 

mpjbuf, which contains all the classes related to the buffering API for the 

mpjdev. 

 

5.2.1 The mpjdev Communication Protocols 

 

The mpjdev device driver encapsulates the protocols used for 

communication. 

  

5.2.1.1 The Eager-Send Protocol 
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The Eager-send protocol is used by the message passing libraries for the 

communication of small messages typically less than 128 Kbytes. This 

protocol works on the assumption that the receiver has got an unlimited 

device level memory where it can store messages. There is no exchange of 

control messages before doing the actual data transmission, thus minimizing 

the overhead of control messages that may dominate the total communication 

time of small messages. Whenever a send method is called, the sender writes 

the message data into the socket channel assuming that the receiver will 

handle it. At the receiving side, there can be more than one scenario, 

depending on whether a matching receive method is posted by the user or 

not. If a matching receive method is posted, the message is copied onto the 

memory specified by the user (sketched out in Figure 20).  

Sender Receiver

2. Send () called.

Message Sent

1. recv() called and user-specified buffer is
available.

3. mpjdev receives the message and copies
it directly to the user specified buffer. The
circular buffer is not used in this scenario.

TIM
E =>

 

Figure 20: The Eager Send Protocol when a Matching recv() is Posted. 

 

However, if a matching receive is not posted, then the mpjdev device driver 

stores the message temporarily in a circular buffer, and copies it to the user 

specified memory when, subsequently, the user calls the matching receive 

method (sketched out in Figure 21). 
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Sender Receiver

1. Send () called.

2. Message received by mpjdev, and the
message is temporarily copied onto
circular buffer.

3. recv() called and the message is copied
from the circular buffer onto the user
specified buffer.

Message Sent

start

end

start

end

TIM
E =>

 

Figure 21: The Eager Send Protocol when a Matching recv() is not Posted. 

 

The large circular buffer is currently a direct buffer. The mpjdev device driver 

associates a starting point and an ending point whenever it copies a message 

onto the buffer that is later used to read the message again. When the device 

encounters the end of the buffer, it starts to copy the message at the start point 

of the buffer assuming that first message copied to the buffer has been 

transferred to the user specified memory.  

 

start(m1)

end(m1)
start(m2)

a) Initial state b) Message (m1)copied. c) Message (m2)copied.

end(m1)
start(m2)

d) Message(m1) read

end(m2) end(m2)

start(m1)

 

Figure 22: The Circular Memory Buffer. 
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5.2.1.2 The Rendezvous Protocol 

 

The rendezvous protocol is used by the message passing libraries for 

communication of large messages, typically greater than 128 Kbytes. There is 

an exchange of messages between the sender and the receiver before the 

actual transmission of the data payload. The overhead of this exchange of 

messages is negligible in terms of the overall communication cost.  
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Figure 23: The Control Message sent by the Sender. 
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Figure 24: The Format of the Control Message Sent by the Receiver. 

 

The rendezvous protocol when the sender intends to send a message, it first 

sends a control message, see Figure 23 for the format of the control message. 

The receiver after receipt of the control message first checks if a matching 

receive method is called or not. If it is called, see Figure 25 for exchange of 

messages, then the receiver sends a control message back, see Figure 24 for 

the format of the control message.  
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TIM
E =>

Sender Receiver

1. Recv() called by the user.

3. Control message received. The user has
already posted the recv(), so sending
GO_AHEAD_SIGNAL to the sender

GO_AHEAD_SIGNAL

4. Received the GO_AHEAD_SIGNAL and sending
the actual message data now.

2. Send () called, so sending the control
message

Control Message Sent

Actual Message Sent

5. Received the actual message data and copied to
user specified buffer.

 

Figure 25: The Rendezvous Protocol when the recv() is First Posted. 

 

If the recv() is not posted, see Figure 26 for exchange of messages in this 

scenario, then the control message is sent back to the sender when a matching 

receive method is posted. A matching receive has to be posted in this protocol 

to save the mpjdev memory. When the sender receives the acknowledgement 

message back from the receiver, it sends the actual data that is later received 

by the receiver. 
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Sender Receiver

2. Control message received and waiting for
the recv() to be called by the user.

3. recv called by the user.

GO_AHEAD_SIGNAL

5. Received the GO_AHEAD_SIGNAL and sending
the actual message data now.

1. Send () called, so sending the control
message

Control Message Sent

Actual Message Sent

4. Sending GO_AHEAD_SIGNAL

6. Received the actual message data and copied to
user specified buffer.

 

Figure 26: The Rendezvous Protocol when the recv() Method is not Posted. 

 

5.2.1.3 Shared Memory (Internal process communication)  

 

This protocol is used when a process is sending a message to itself. The ideal 

situation for two processes running on the same machine would be to use 

shared memory paradigm to pass data. This is not possible in Java where two 

JVMs running on the same machine can only send the message to each other 

by using sockets and thus the communication cost is dominated by the 

bandwidth of memory bus. This is because each of the JVM has its variables 

on its heap inaccessible to other JVM instances running on the same 

computer. Thus, the shared memory communication is restricted to same 

process communication only (one JVM).  
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JVM (process 0) JVM (process 1)

A single machine
 

Figure 27: Shared Memory Communications. 

 

5.2.2 The Buffering API 

 

The buffering API allows user to pack/unpack the data to be sent to other 

processes. The primary reason for implementing this API is that the sockets 

do not directly access the memory and thus are unable to write/read the basic 

datatypes. Moreover, without such a buffering API, a message passing system 

can become quite complex for the users to manage because of the absence of 

pointers and the type safety feature of Java, which does not allow “void *” 

such as C. Most of the complex operations, such as communicating objects 

and handling gather/scatter operations; used at the higher levels of the 

library, are also supported by this buffering API. 

 

A buffer object consists of two data storage structures. The first is a static 

buffer, in which the underlying storage primitive is the ByteBuffer class. The 

second is a dynamic buffer where a byte array is the storage primitive. The 

size of the static buffer is predefined, and can contain only primitive 

datatypes. The rationale behind this is that it is possible to calculate the 

number of bytes required before copying the data onto the buffer. Whereas on 

the other hand, the dynamic buffer is used to copy serialized Java objects, in 
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which case it is not possible to determine the length of the serialized objects 

beforehand. As a convenience to the user, Java basic datatypes may also be 

stored in dynamic buffers. According to [79], in general writing to or reading 

from a static section of the buffer is much faster than the corresponding 

operation on a dynamic section of the buffer. In general, use of a dynamic 

buffer is only recommended for short or infrequent message exchanges.  

 

5.2.2.1 Buffer Sections 

 

A message consists of zero or more sections. Each section can hold elements 

of the same type, basic datatypes or Java objects. A section consists of a 

header, followed by the actual data payload.  

 

To create sections, the buffering API provides utility methods like 

putSectionHeader(), which takes as an argument one of the datatypes 

(possible datatypes are shown in Table 2 and Table 3) and can only be 

invoked when the buffer is in a writeable mode. Once the section header has 

been created, then the data can be copied onto the buffer using write() 

method if contiguous elements are to placed onto the buffer, or using the 

gather()/strGather() methods if non-contiguous elements of Java arrays are 

to be copied onto the buffer. To read the section, the user invokes the 

getSectionHeader() method when the buffer is in a readable mode, which is 

later followed by a series of read(), for contiguous elements of Java array, or 

scatter()/strScatter(), for non-contiguous elements of Java array. 

 

5.2.2.2 The Layout of Buffers 
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The data stored in a static buffer can be represented as big-endian or little-

endian. This is determined by the encoding property of the buffer, which 

takes on of the values java.nio.ByteOrder.BIG_ENDIAN or 

java.nio.ByteOrder.LITTLE_ENDIAN. The encoding property of a newly 

created buffer is determined by the return value of 

java.nio.ByteOrder.nativeOrder() method. A developer may change the 

format to match the encoding property of the underlying hardware, which 

results in efficient numeric representation at the JVM layer. The overall layout 

of the static buffer is shown in Figure 28.  

 

 

Figure 28: The Layout of a Static Buffer [79] 

 

As shown in Figure 28, a message consists of zero or more sections. The 

message consists of a message header followed by the data payload. A 

padding that can be up to 7 bytes may follow a section if the total length of 

the section (header + data) is not a multiple of ALIGNMENT_UNIT, which has 

value 8. The general layout of an individual section in the static buffer is 

shown in Figure 29. 
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Figure 29: The Layout of a Single Section [79] 

 

Figure 29 shows that the message header is 8 bytes long. The value of the first 

byte defines the elements’ type contained in the section. The possible values 

for static and dynamic buffers are listed in Table 2 and Table 3 respectively. 

The next three bytes are not currently used, and reserved for possible future 

use. The next four bytes contain the number of elements contained in this 

section, i.e. the section length. This numerical value is represented according 

to the encoding property of the buffer. The size of the header in bytes is 

SECTION_OVERHEAD, which has value 8. If the section is static, the header is 

followed by the values of the elements, again represented according to the 

encoding property of the buffer. If the section is dynamic, the ʺSection dataʺ is 

absent from Figure 29 because the data is in the dynamic buffer which is a 

byte array. The Java serialization classes (java.io.ObjectOutputStream and 

java.io.ObjectInputStream) dictate the format of the dynamic buffer.  

 

 

 

 

 

 53



Datatype Possible Values 

integer  mpjbuf.Buffer.INT 

byte  mpjbuf.Buffer.BYTE 

short mpjbuf.Buffer.SHORT 

boolean mpjbuf.Buffer.BOOLEAN 

long mpjbuf.Buffer.LONG 

float mpjbuf.Buffer.FLOAT 

double mpjbuf.Buffer.DOUBLE 

Table 2: The Datatypes Supported by a Static Buffer 

 

Datatype Possible Values 

Java Objects mpjbuf.Buffer.OBJECT 

Bytes on dynamic buffer mpjbuf.Buffer.BYTE_DYNAMIC 

Shorts on dynamic buffer mpjbuf.Buffer.SHORT_DYNAMIC 

Booleans on dynamic buffer mpjbuf.Buffer.BOOLEAN_DYNAMIC 

Integers on dynamic buffer mpjbuf.Buffer.INT_DYNAMIC 

Longs on dynamic buffer mpjbuf.Buffer.LONG_DYNAMIC 

Floats on dynamic buffer mpjbuf.Buffer.FLOAT_DYNAMIC 

Doubles on dynamic buffer mpjbuf.Buffer. DOUBLE_DYNAMIC 

Table 3: The Datatypes Supported by a Dynamic Buffer 

  

5.2.2.3 Packing/Unpacking Methods 

 

There are three basic kinds of method for writing/reading data to/from a 

buffer section and for reading data from a buffer section. These methods are 

summarized in Table 4, and followed by an explanation of them. 
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Packing/Unpacking 
Methods 

Section writing methods Section reading methods 

1. Write/Read Methods write(type[] src,  
      int srcOff,  
      int numEls) 

read(type[] dest,  
     int dstOff,  
     int numEls) 

2. Gather/Scatter Methods gather(type[] src, 
       int numEls, 
       int idxOff, 
       int[] indexes) 

scatter(type[] dest, 
        int numEls, 
        int idxOff, 
        int[] indexes) 

3. Gather and Scatter 
Methods for multi-strided 
regions 

strGather(type[] src, 
       int srcOff, 
  int rank, 
  int exts, 
  int srs, 
  int[] shape) 

strScatter(type[] dest,
 int dstOff, 
 int rank, 
 int exts, 
 int srs, 
 int[] shape) 
    

Table 4: Buffer Packing/Unpacking Methods 

 

5.2.2.3.1 Write/Read Methods 

 

The methods, shown in row 1 of Table 4, are used to write and read 

contiguous Java arrays of all the primitive datatypes including object arrays. 

The write method copies numEls values of the src array starting from srcOff 

onto the buffer. Conversely, the read method copies numEls values from the 

buffer and writes them onto dest array starting from srcOff. 

    

5.2.2.3.2 Gather and Scatter Methods 

 

The methods, shown in row 2 of Table 4, are used to write and read non-

contiguous Java arrays of all the primitive datatypes including object arrays. 

The gather method copies numEls values of the src array starting from 

indexes[idxOff] to indexes[idxOff+numEls] onto the buffer. Conversely, the 

scatter method copies numEls values from the buffer and writes them onto 

dest array starting from indexes[idxOff] to indexes[idxOff+numEls].    

 

5.2.2.3.3 Gather and Scatter Methods for Multi-Strided Regions    
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The methods, shown in row 3 of Table 4, likewise transfer data from or to a 

subset of elements of a Java array, but in these cases the selected sub-set is a 

ʺmulti-strided regionʺ of the Java array. The specification is fairly complex, 

but these are useful operations for dealing with multi-dimensional data 

structures, which occur often in scientific programming. More details about 

these methods can be found in [79]. 

    

5.2.2.4 Buffer Modes  

 

A buffer object has two modes, write and read. The write mode allows the 

user to copy the data onto the buffer, and the read mode allows the user to 

read the data from the buffer. It is not permitted to read from the buffer when 

it is in writeable mode. Similarly, it is not permitted to write to a buffer when 

it is readable mode. 

 

The newly created buffer is always in a writeable mode. During this mode, 

the user may copy the data to the buffer and then call commit(), which puts 

the buffer in a readable mode. The user can now read the data from the buffer 

and put it back in writeable mode for any possible future use that is done by 

calling the clear().  

 

5.2.3 Binding It All Together 

 

Having described the communication protocols and the buffering API, we 

now describe how the device drivers use the various communication 

protocols. 
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5.2.3.1 The Sending Process 

 

The sending process is always initiated by a user thread, which means calling 

either the blocking or non-blocking send methods. Whenever the method is 

called, the send method first checks whether the destination process is equal 

to the current process. If it is, then the user thread uses the shared memory 

protocol to copy the message to itself. In case the destination process is not 

equal to the current process, then the message length is compared against the 

protocol switch limit, which is provided by the user to the device through the 

runtime configuration information. If the message length is smaller than the 

protocol switch limit, then the message is sent using the eager send protocol. 

If the length is equal or greater than the protocol switch limit, then the 

message is sent through the rendezvous protocol. As part of the rendezvous 

protocol, the sender first sends a control message to the receiver. The sender 

data flow of user thread for the rendezvous protocol in shown in Figure 30. 

 

Is destination rank equal to
curent process rank YES

Do shared
memory send

N
O

Eager-Send

R
endezvous

Send the
control

message to the
receiver

What protocol to use ?
(depends on message length)

Send message
(eager send

protocol)

 

Figure 30: The Sending User Thread 
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The selector thread for the sending process is responsible for receiving the 

control message back from the receiver. If the receiver sends a 

GO_AHEAD_SIGNAL, as a response to the control message sent by the sender user 

thread, then the sender goes on to send the actual data, see Figure 31 for 

details. 

Is  it a  co n tro l m essa g e
? N O

       YES

Y E S

S en d  th e
m essag e

(ren d ezv o u s
p ro to co l)

N
O

Is  it
G O _AH E AD _S IG N AL

fro m  th e  rec e iv er?

S ee  th e  rece iver s id e  flo w
ch arts  ...

S ee  th e  rece iver s id e
flo w  c h arts  ...

 

Figure 31: The Sending Selector Thread 

 

5.2.3.2 The Receiving Process 

 

In contrast to the sending process the receiving process may be initiated by 

the user thread, by posting a recv() call, or by the selector thread, which may 

receive a control message from the sender (rendezvous protocol) or receive 

the actual message data from the sender (eager-send protocol). 
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Figure 32 shows the data flowchart of the user thread at the receiving side. 

When the recv() method is called, the device first checks whether the source 

specified is equal to the current process rank. If it is, then the receiver uses 

shared memory protocol to receive the message. If it is not, then it first checks 

the queue (recv() queue) containing information about the recv() calls, 

whether the selector thread has already received a control message related to 

this particular recv(). If this queue does not contain this recv() call, then the 

user thread posts a recv() call and adds an entry into the recv() queue. If this 

queue contains a request related to this recv(), it means that the selector 

thread has already received the control message (for the rendezvous protocol) 

or has already received the actual message (for the eager send protocol).  The 

protocol switch limit is compared to the message length to decide which 

protocol to use. If the message length suggests eager send, then the user 

thread receives the message, otherwise, a control message GO_AHEAD_SIGNAL is 

sent to the sender as a green signal to transmit the actual message data. 
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Is source rank equal to
my rank ? YES

Do shared
memory recv

N
O

YES

What protocol to use ?
(depends on the length

of the message) Eager-Send

Recv
message

R
endezvous

Send the
GO_AHEAD_

SIGNAL to
sender

N
O

Post the recv
request in the

recvQueue.

Control Message related
to recvrequest present

in recv queue ?

 

Figure 32: The Receiving User Thread 

 

Figure 33 show the data flowechart of the selector thread at the receiving end. 

When selector thread receives a message, it first determines whether this is 

control message or not. If it is not a control message, then the sender has sent 

the actual data (rendezvous protocol) that is received by the receiver. This is 

the next step to the GO_AHEAD_SIGNAL sent to the sender by the user thread; see  

Figure 32 for details. If this is a control message, then it is checked to see if 

there is a matching recv() call present in the recv() queue, which is posted 

by a user thread or not. If there is a request then it means that the user has 

already posted the recv(), so a GO_AHEAD_SIGNAL is sent to the sender to give 

permission to send the actual data. If there is no matching recv() request 

found in the recv() queue, then it is posted and can be later checked by the 

user thread when the user posts the recv() method. 
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Is it a control message
? NO

Receive the
message

(rendezvous
protocol)
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   YES
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O
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recvQueue and
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to call recv()

N
O

Is it a control message
at the receiver side ?

See the sender side flow
charts ...

 

Figure 33: The Receiving Selector Thread 

 

5.2.3.3 The Communication Primitives of mpjdev 

  

Table 5 shows the method provided by the mpjdev API. 

 

Modes Send Recv 
Blocking  send(mpjbuf.Buffer buffer, 

           int dest,  
           int tag) 

Statusrecv(mpjbuf.Buffer buffer, 
                     int src,  
                     int tag) 

Non-
blocking 

Req isend(mpjbuf.Buffer buffer, 
                   int dest,  
                   int tag) 

Req send(mpjbuf.Buffer buffer, 
                  int src, 
                  int tag) 

Table 5: The Methods Provided by the mpjdev API 

    

5.3 The MPJ Runtime  

 

Currently, we are implementing a runtime to support the execution of the 

processes on remote hosts, in the first instance over a LAN. The key idea 

behind implementing a runtime is not to compromise the portability, which is 
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the basic motive to develop a message passing system. The implementation is 

in early stage and currently addresses how to start the execution of the 

parallel application. The runtime is divided into parts, an initiator module 

that starts the execution of the application, and a daemon that runs spawns 

the application on the remote nodes. Figure 34 shows an initiator module 

running on the head node of the cluster, and daemons running on the 

compute nodes and the two workstations present in the LAN. The initiator 

module starts the execution of the application by contacting the daemons. 

  

Head Node

1 2 3

4 5 N

Daemon

Daemon Daemon

DaemonDaemon

Workstation

Workstation

Daemon

Daemon

Initiator Module

 

Figure 34: The MPJ Runtime Installed on a Linux Cluster and Two 

Workstations on LAN Running Windows  

 

The runtime works as follows,  

 

1. First of all, the administrator installs, configures, and starts the daemons on 

hosts, which may execute MPJ processes. The daemon is set up as a Windows 

service or in inetd under UNIX.  
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Admin machine (the admin
needs an account on all

machine where he wants to
start the daemon)

Windows-1

Linux-2

Linux-1

Start the daemon using 'ssh'

Start the daemon using 'ssh'
Start the daemon using 'psexec'  

Figure 35: The Administrator Installing Daemons on Remote Nodes 

 

2. The next step is to add users to this set-up. Only the administrator should be 

allowed to do this. The administrator adds the public keys of all the users 

under question to all the machines running the daemons. 

Admin (The administrator has
the public key/cert of the user

test)

Windows-1

Linux-2

Linux-1

Add the public key of user test cert

Add the public key of user test
certAdd the public key of user test cert  

Figure 36: The Administrator Adding the Users on Daemon Machines 

 

3. Once the daemons are up and running and the users are added, the next step 

is to determine how to start the processes. For example take a user ‘test’ trying 

to execute class Test.java on 6 nodes. This Test.java uses mpjdev and 

mpj packages imported from mpjdev.jar and mpj.jar. We do not assume 

a shared file system, which essentially means that there must be a way to 

download/copy the binaries along with the dependant classes and libraries 

from the user machine. The downloading/copying feature is explained in 

more detail in the sub-section 5.6.1. 
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User Machine (user 'test')

1. Write the manifest file,
     ----------------------------
     Manifest-Version: 1.0
     Main-Class: Test
     Class-Path: mpjdev.jar mpj.jar
     ---------------------------
2. Make a jar file,
jar -cfm client.jar manifest Test.class

3. Start the http server to serve the code and
dependencies.
java -jar tools.jar -dir . -port 15000

4. Run the client program of the daemon,
java Client 5 http://HOST:15000/client.jar

Windows-1

Linux-2

Linux-1

send signal to
 execute class Test tw

ice

with rank 0 and 1

send signal to execute class Test
twice with rank 2 and 3

send signal to execute class Test

once with rank 4

 

Figure 37: MPJ Job Submission to the Remote Nodes 

 

5.3.1 Dynamic Class Loading 

 

For step 3, described above, we need a dynamic class loading mechanism that 

copies the binaries along with all the dependencies from the user system that 

runs the initiator module to the daemon (execution nodes). We have 

implemented this dynamic class loading as follows,  

 

1. The user should bundle up the program into a Java archive format called a 

jar. The benefit of using jar files is that the user can specify the main class, 

along with the dependencies. In the Figure 37, the main class is Test and 

the dependencies for Test class are the libraries imported from 

mpjdev.jar and mpj.jar. We put the names of these two dependencies 

in the CLASSPATH environmental variable. 
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2. The next step is to start an HTTP server that points to the directory 

containing the client.jar file. Whenever some JVM requests this jar 

file, mpj.jar and mpjdev.jar are automatically loaded into the 

requesting JVM. 

 

HTTP
server

Daemon machine

Load Test class from client.jar using
http class loading

Load mpjdev.jar and mpj.jar as the
manifest these two jars in cp attr.

 

Figure 38: The Dynamic Class Loading 

 

3. The next step is to actually start the client that sends the request to the 

compute nodes to execute a jar file present on a particular URL. The 

compute nodes use the URL to actually download the jar file, and execute 

the main class, which in Figure 38 is the Test class. 

 

5.3.2 Security Issues 

 

We have decided to implement a SSH like authentication mechanism for the 

MPJ runtime.  

 

1. The administrator can install the daemons on Linux or Windows, 

provided they have a system account. 

2. Once the daemon is running on any node, only the administrator can add 

the public keys of the users to the daemons. It is assumed that each of the 
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users of the system will have a keystore that contains their public and the 

private keys. 

3. The initiator module sends a signal to the daemon (execution node) along 

with the user name. The daemon encrypts a random number with the 

public key of the user (added in the previous step) by the administrator, 

and then sends the encrypted number to the client. The initiator module 

decrypts it, and sends the random number back to the daemon machine. 

The daemon machine matches the random number with the number sent 

by the user. If the two match each other, then the user is authenticated. 

This is explained in the Figure 39. 

TIM
E =>

signal to run processes
as user 'test'

Initiator Module Daemon

1. Send the signal to execute
processes

2. Encrpyt (publicKey,273) and
send to client machine.273 encrypted using pub

key

3. Decrypt
(privateKey,encryptedNum) and
send back to the daemon.

decrypted number
4. If the decrypted number,
matches the number sent, the
user is authenticated.

 

Figure 39: SSH-based Authentication 

 

5.4 Summary  

 

In this chapter, we have discussed the implementation of the mpjdev device 

driver and the associated MPJ runtime infrastructure. The buffering API 

implemented as part of the mpjdev allows application developers to send 
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objects along with the other Java primitive datatypes. The device driver 

implements two communication protocols. These are important to support 

the different modes of sending specified by the MPI standards. These modes 

include standard blocking and non-blocking, synchronous, and ready mode. 

The implementation of the MPJ higher-level communications and other 

features like communicators, virtual topologies, supporting derived datatypes 

are currently in progress.  
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6 Performance Evaluation 

 

6.1 Introduction 

 

In this chapter, we evaluate and compare the performance of the mpjdev 

device driver with the native mpjdev device driver. 

 

6.2 Test Environment 

 

The performance tests were conducted on the DSG Cluster; known as 

“StarBug”, that consists of a head node “Holly” and eight compute nodes. 

The configuration of each of the nodes is described in Table 6 and Table 7. 

  

Processor Type Dual Xeon (Prestonia) 

Processor Speed 2.8 Ghz 

Processor Cache 512K L2 Cache 

Front Side Bus 533 MHz 

RAM 2 GB ECC 

Storage 80 GB ECC 

Java Version J2SE 5.0 Beta 2 

Operating System Debian Linux (Sarge) 

Table 6: The DSG Cluster Configuration 

 

mpjdev Version 0.1 alpha  

native mpjdev mpjdev 2.0: Internal Alpha Release 

MPICH MPICH-1.2.5 

Table 7: The Software Versions 
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6.3 The Evaluation of mpjdev  

 

In this sub-section, we evaluate point-to-point communications between two 

remote nodes using the Ping-Pong benchmark. The Ping-Pong benchmark 

sends a message of variable length, n, is sent from one node to another. The 

time for the message to travel to the remote node is half the total time 

recorded. The benchmark performs the test at each data point a thousand 

times, preceded by a warm-up loop of hundred iterations.  

 

6.3.1 The Point-to-Point Comparison on Remote Linux Nodes  

 

This section presents the point-to-point comparison of the two devices. 

Theoretically, both the devices should perform almost the same for small 

message with mpjdev outperforming the native mpjdev for the larger 

messages because of the overhead of copying the larger sized arrays between 

the Java and the native MPI. A detailed discussion of this overhead can be 

found in [80]. 

 

6.3.1.1 Transfer Time Comparison 

 

Figure 40 shows plots of the transfer time comparison between the mpjdev 

and the native mpjdev. The latency that is defined as the time to transfer one 

byte message is 275 microseconds and 295 microseconds for mpjdev and 

native mpjdev respectively. 
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Figure 40: A Transfer time Comparison of mpjdev and the Native mpjdev 

 

The graph shown in Figure 40 indicates that the performance of mpjdev and 

the native mpjdev is almost the same. mpjdev takes a fraction of a more time 

than the native mpjdev for the message size between 4 to 64 bytes. The reason 

for this overhead is the additional copy that may be incurred by the eager-

send protocol. An increase in the transfer time for both the devices is 

noticeable as the message size reaches the length of 16 Kbytes. This is because 

the default socket buffer size of the Linux kernel 2.4.26 is 16 Kbytes. This 

plays a significant role in the overall transmission time because the messages 

are divided into multiple chunks for messages larger than 16 Kbytes. Overall 

with a slight overhead of the mpjdev for small messages, the performance of 

the two devices is almost the same. 
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6.3.1.2 Bandwidth Comparison 

 

The maximum bandwidth achieved on Fast Ethernet by mpjdev and native 

mpjdev is 88.11 Mbps and 87.94 Mbps respectively.  

 

Figure 41: A Bandwidth Comparison of mpjdev and the Native mpjdev 

 

Figure 41 indicates that there is no significant performance difference between 

the two devices. The performance degradation for both the devices at 128 

Kbytes (message size) is due to the change of the communication protocol 

from the eager-send to the rendezvous. For larger message sizes, the overhead 

of the JNI is noticeable for the native mpjdev that allows mpjdev to achieve 

more throughput than the native mpjdev. 
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6.3.2 Point-to-Point Communications on a Single Linux Node 

 

This section presents the local host comparison of communication of the two 

devices. The performance of the native mpjdev should be better than mpjdev 

because the native MPI can use shared memory communication. The two Java 

processes run as separate JVMs on the same machine and the only way to 

communicate is through sockets. In such communications the memory bus 

bandwidth becomes the bottleneck whereas the timings for native MPI is 

dominant by memory access time. 

 
6.3.2.1 Transfer Time Comparison 

 

Figure 42 shows the transfer time comparison on the localhost between the 

mpjdev and the native mpjdev. The latency is 169 microseconds and 25 

microseconds for mpjdev and the native mpjdev respectively. 
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Figure 42: A Transfer Time Comparison of mpjdev and the Native mpjdev on 

Localhost 

 

Figure 42 shows that the performance of native mpjdev is clearly better than 

the mpjdev. As mentioned, this is because the two mpjdev processes on the 

same machine cannot use the shared memory paradigm for communication.  

 

6.3.2.2 Bandwidth Comparison 

 

The maximum bandwidth achieved by mpjdev and native mpjdev is 1261.34 

Mbps (for 32 Kbytes message size) and 1927.52 Mbps (for 64 Kbytes message 

size) respectively.  

 

Figure 43: A Bandwidth Comparison of mpjdev and the Native mpjdev on 

Localhost 
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The native mpjdev outperforms the mpjdev by 25% at 64 Kbytes. The poor 

performance of mpjdev processes running on the same SMP cluster node is 

clearly a bottleneck especially for SMP clusters where shared memory 

communication is an effective way for the processors on same main board to 

communicate to each other.  

 

6.3.3 Protocol Switch limit 

 

MPICH uses 128 Kbyes (message size in bytes) as the threshold to switch 

from eager-send to rendezvous protocol. Though we note from Figure 45 that 

the performance of the eager-send protocol is better for messages sizes of 1 

Mbytes, but the size of the mpjdev buffer where the messages are stored does 

not allow supporting eager-send messages of such length. For this reason, we 

have chosen 128 Kbytes as the protocol threshold, but the switch limit is not 

hard-coded in the application and can be changed by the users through the 

configuration file. If the user wishes to use the eager-send protocol, then they 

should increase the JVM heap size, as the default 64 Kbytes is not enough for 

this kind of large mpjdev buffer.   

 

6.3.3.1 Transfer Time Graph 
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Figure 44: The Transfer Time of the Eager-send and Rendezvous Protocols 

 

The latency is 282 microseconds for eager-send and 906 microseconds for the 

rendezvous protocol. There is an exchange of control messages before the 

actual data is transmitted using the rendezvous protocol that results in a high 

latency. For the same reason, the rendezvous protocol is useful for messages 

of larger size when the overhead of the control messages becomes negligible 

when compared to the overall communication cost. 

 

6.3.3.2 Bandwidth Graph 
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Figure 45: The Bandwidth of the Eager-send and Rendezvous Protocols 

 

The bandwidth is 88.02 Mbps and 88.11 for eager-send and rendezvous 

respectively. The rendezvous protocol achieves greater bandwidth than the 

eager-send because it avoids the additional copying that the eager-send may 

incur that is more effective factor than the time spent on control messages in 

case of rendezvous. 

 
6.4 The Evaluation of the MPJ Point-to-Point Layer 

 

This sub-section presents a comparison between MPJ, mpiJava, and MPICH. 

Currently the point-to-point methods in MPJ are implemented on top of the 

mpjdev, and the implementation of the collective communications is a work 

in progress. Netpipe [17] is used to calculate the transfer time and the 

bandwidth achieved for MPICH.  
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6.4.1 Point-to-Point Comparison on remote nodes of Linux nodes 

 

This section presents the comparison of point-to-point communication 

between MPJ, mpiJava, and MPICH.  

 

6.4.1.1 Transfer time Comparison 

 

Figure 46 shows a plot of the transfer times of MPJ, mpiJava, and MPICH. The 

latency, defined as the time to transfer one byte message, is 268 microseconds, 

145 microseconds, and 247 microseconds for MPJ, MPICH, and mpiJava 

respectively. 

 

 

Figure 46: The Transfer Time for MPJ, mpiJava, and MPICH 
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Figure 46 shows the transfer times for the three libraries. The transfer time 

graph is significant for small messages and is useful for calculating latency. 

Whereas, the bandwidth graph are significant for large messages and are 

useful for evaluating the maximum bandwidth achieved. 

 

6.4.1.2 Bandwidth Comparison 

 

The maximum bandwidth achieved by MPJ, MPICH, and mpiJava is 89.26 

Mbps, 89.57 Mbps, and 83.92 Mbps respectively. 

 

Figure 47: The Bandwidth of MPJ, mpiJava and MPICH 

 

Figure 47 indicates that MPICH achieves the highest bandwidth, followed by 

MPJ. This indicates that the MPJ point-to-point communication layer incurs a 

small overhead. MPJ and MPICH outperform mpiJava for message sizes 
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larger than 128 Kbytes, this is due to which is because of the overhead of the 

JNI.  

 

6.5 Summary 

 

In this chapter, we have evaluated the performance of the mpjdev by 

comparing it with the native mpjdev that uses MPICH as the underlying 

native MPI library. MPJ’s performance was found to be fairly close to the 

native mpjdev. This comparison was followed by a comparison between MPJ, 

MPICH, and mpiJava for point-to-point communications. It is clear that MPJ 

outperforms mpiJava and attains performance that is comparable to MPICH. 

Thus, our hypothesis presented in the design chapter that MPJ should be an 

efficient and high-performance library holds true. We intend to provide a 

detailed comparison of MPJ implemented on top of the mpjdev with other 

MPI libraries in the near future.  
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7 Conclusion 

 

In this chapter, we conclude this report by discussing some of the lessons 

learnt during the implementation of MPJ and outline the future research.  

 
7.1 General summary 

 

This report presented the design and the implementation of MPJ. One of the 

obvious advantages of such a message passing system is a portable approach 

to problem solving using heterogeneous operating systems and hardware 

without compromising the overall communication performance. MPJ follows 

a layered structure that allows enhancements to the existing infrastructure. 

This also allows the higher communication layers to swap in various device 

drivers to make use of specialized hardware or protocols. The mpjdev device 

driver implemented as part of this project has an efficient buffering API that is 

used to pack/unpack the data to/from the buffer. mpjdev implements three 

communication protocols, inter-process, eager-send and the rendezvous 

protocol. mpjdev provides a simple interface that provides the basic 

functionality for starting up the device, setting up the communication 

infrastructure and sending/receiving the data to/from the other peers. We 

have found that the performance of the mpjdev is reasonable in comparison 

to the native mpjdev. The point-to-point communication layer has been 

implemented on top of mpjdev, and the performance comparisons to mpiJava 

and MPICH in Chapter 6 show that it is possible to get high-performance 

without compromising the portability of the Java language.  

 

The experiences gained by the implementation of this message-passing library 

suggest that there are still some areas where detailed research is still needed. 
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Out of these areas, the lack of support for shared communication paradigm 

between the JVMs running on the same host and efficient multi-dimensional 

arrays operations are the two important areas. The JVM hides all the details of 

garbage collection, though the garbage collection algorithms can be changed 

through the use of command line switches to the JVM. It is desirable to have 

more information about the garbage collection thread as we suspect that it is 

the cause of performance overhead in some situations. It has been noticed that 

while developing some memory intensive application, the JVM runs out of 

memory that can only be handled by increasing the JVM heap size. The 

implications of increasing the JVM heap size are not clear, and an 

interfaces/tools that may expose more internal JVM information is vital for the 

adoption of message passing libraries in Java like MPJ.  

 

7.2 Future Work 

 

Currently, the implementation of mpjdev and point-to-point communications 

layers is complete. In the near future, the implementation of the runtime and 

the MPJ collective operations will be completed. Once finished, we intend to 

benchmark MPJ and compare it to mpiJava and other C/Fortran message 

passing libraries.  

 

7.2.1 Implementing Four Modes of Point-to-Point Communications 

 

MPJ currently only supports the standard mode of send operation. The MPI 

standard defines three additional modes of sending messages, which we 

intend to implement in the near future. The three additional modes of point-

to-point communications include buffered, synchronous, and ready mode. 

More details of these modes can be found in [4]. 
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The mpjdev implements three communication protocols; inter-process 

communication protocol, eager-send, and rendezvous protocol. The last two 

protocols along, with the buffering mechanism, at both the sender and the 

receiver side can support the four modes of sending the messages. 

 

7.2.1.1 Implementing the Collective Communications Layers 

 

The MPI standard defines a set of collective communications operation in 

order to facilitate parallel programming. Group communications makes the 

task easy for application developers and makes their code more 

understandable. Group communications include operations like barrier 

synchronization, broadcast, gather/scatter, and reduce operations. Currently 

these operations have not been implemented in MPJ, but we intend to 

implement these on top of point-to-point communication layer. In addition to 

collective communications, MPJ will support process topologies and 

communicators in order to be a standards-based MPI implementation.  

 

7.2.1.2 Support for Multi-dimensional Arrays 

 

The support for multi-dimensional arrays in Java is necessary for the adoption 

of any message-passing library by the technical computing community. The 

reason is that multi-dimensional arrays form the basic building blocks of 

nearly all of the scientific problems. Java’s multi-dimensional arrays are 

fundamentally different from other traditional languages like C and Fortran. 

Java deals with multi-dimensional arrays as arrays of arrays that essentially 

means that a multi-dimensional array need not to be rectangular, which is 

confusing for application developers as they are accustomed to rectangular 

arrays like in C or Fortran. We intend to incorporate the support of multi-
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dimensional arrays by using the buffering API implemented by the mpjdev 

device driver. Some of related work done regarding multi-dimensional arrays 

can be seen in [81][82]. 

 

7.2.1.3 Enhancements to the MPJ API 

 

During the early part of 1998, several prototypes Java bindings for MPI-like 

libraries emerged. As a result, the Message-Passing Working Group of the 

Java Grande Forum [83] was formed that came up with an initial draft of an 

API, which was distributed at SC 98. Since then, a draft API called MPJ has 

been specified, but there is no complete implementation of this specification 

at the moment. The MPJ API specifications can be seen in [7][4]. 

 

The MPJ API is procedural and is not fully making use of the object-oriented 

features that Java offers. We intend to come up with a draft API that is more 

Java centric.  

 

7.2.1.4 Shared Memory Communications 

 

The Java language does not specify a way for two processes that execute in 

separate JVMs on the same machine to communicate. This results in costly 

communications between processes running on the same machine. There are 

two ways to tackle this problem. The first approach is to develop a separate 

device driver that uses JNI to invoke the native C code that handles such 

shared memory communications. The second and the preferred approach, is 

to run all the processes within the same JVM as different threads. The second 

approach is preferable because this does not compromise the portability of the 

Java language. 
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7.2.2 The Runtime Infrastructure 

 

The portable nature of the Java language is one of the biggest advantages for 

implementing a messaging system. Some of the previously developed 

message passing system use shell scripts to start the processes over the 

remote nodes of the Linux cluster. Others use the native MPI runtime to start 

the execution of the parallel job. These approaches are not reasonable for a 

Java message passing because they compromise portability. Thus it is 

necessary to develop a runtime in Java that allows spawning of processes 

over heterogeneous operating systems. The runtime we are currently 

implementing will be extended to build a whole message-passing 

infrastructure that allows easy installation, execution, debugging, and 

performance profiling of the parallel applications. In addition the runtime 

should handle various software and hardware failures that the application 

may encounter during the course of their execution. We explain the runtime 

in more detail in this section. 

 

7.2.2.1 Runtime Modules 

 

In this section, we describe each of the modules of the runtime infrastructure 

in more detail. Figure 48 shows DSG cluster ‘Starbug’ that consists of the head 

node, connected via a private network to the compute nodes. It also shows 

various modules of the MPJ runtime and their interaction. The user uses a 

laptop, shown in Figure 48, to install and execute the parallel application. 
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Figure 48: The MPJ Runtime Infrastructure 

 
7.2.2.1.1 The MPJ Daemon 

 

The daemon module runs on all the machines that participate in the execution 

of a MPJ parallel application. These machines may be the computational 

nodes of the cluster (Figure 48) or workstations present on the LAN. 

 

7.2.2.1.2 The MPJ Master 

 

The master module runs on the front-end of the cluster (Figure 48) or it may 

run on any of the machines present on LAN including the host running the 

initiator module. The rationale behind having this module is that it is not 

possible to access all the daemons running on the compute nodes from the 

user machine because the computational nodes of the cluster are normally 

only accessible from the head node of the cluster. In case, an organization 

does not have a cluster, then the master module can be started on any one of 

the machines over the LAN machine, even the user machine. 
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7.2.2.1.3 Initiator Module 

 

The initiator module runs on the user machine and allows the user of this 

infrastructure to execute, debug, and profile the parallel application. The user 

has the option to start the graphical client, or run the initiator module on the 

command line. Once the user has written the parallel application, the initiator 

module allows the user to submit the application to the master module, and 

get the output from the master. The initiator module also allows the check the 

status of the executing application through the monitoring and profiling 

interface. Moreover, it also allows debugging of the application. Java 2D [84], 

Java 3D [85] and Java Analysis Studio (JAS) [86] are some of the useful Java 

packages to present the information regarding the execution of the process in 

a user-friendly and understandable way. We intend to re-use the code from 

some of the relevant efforts [87][37] in order to save development time. 

 

7.2.2.2 Installation of the Runtime 

 

One of the important issues that we intend overcome is that of simplifying the 

installation of the infrastructure. The task of installation may become tedious 

if the users have to do it by hand, for example installing and configuring MPJ 

on hundreds of nodes. One other issue is that Windows OS does not provide 

a mechanism to remotely and securely install the modules like the Linux OS. 

We are currently investigating ways [89] to deal with this issue. 

 

The user must provide some configuration information like the name the 

names of any machine that the user would like to run the daemon on. In case 

of a cluster, the user only specifies the name of the head node. The master 

module is remotely installed on the head node that finds the compute nodes 
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and installs the daemon on all the compute nodes. In case of workstations, the 

daemons are remotely installed from the user machine.  

 

The installation of the initiator module can be done using the Java Web Start 

[88] or it can be started on the user machine as a normal Java application. 

 

7.2.2.2.1 Forming a Tree Topology 

 

Once the daemons and the master module have been installed on the hosts, 

the master modules and the daemons arrange themselves in a tree topology 

with the master as the root of the tree. The master module is responsible to 

manage the topology. To avoid performance bottlenecks, multiple instances 

of the master modules may be started that form two trees. 

 

7.2.3 Operations of the Runtime 

 

In this sub-section, we outline some of the functionality provided by the 

runtime infrastructure to the application developers. 

 

7.2.3.1 Execution of the Application 

 

The user can interact with the initiator module executing on their node to 

execute the parallel application. This module can be started in a visual or 

command line mode. The GUI allows a way for the application developer to 

submit the application to the master, specifying the number of the processes. 

The master will subsequently run the application over the daemons, either the 

daemons over the cluster, or the daemons on the workstations present in the 

LAN. This is shown in Figure 48, where the user has requested the execution 

of an application on three nodes. 
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7.2.3.2 Debugging the application 

 

The master receives the information back from the daemon about the 

execution of an application. It return the information back to the initiator 

module running on the user host to assist in the debugging of the application, 

that is critical for diagnosing potential bugs. All the information regarding the 

partial execution and the point of failure is communicated back to the user, 

which can be analysed to later debug the application. 

 

7.2.3.3 Profiling and Monitoring the Application 

 

The runtime module contains two sub-modules that keep track of the 

profiling and monitoring information of the application being executed. All of 

this information can be stored either in a database at the user machine for 

historical purposes, or can be viewed in real-time. Tools like JVMTI [58] 

dump the execution data regarding the JVM execution, which is hard to 

analyse by scientists and can be presented in useful manner to help them find 

potential problems. 

 

7.2.3.4 Runtime Fault-Tolerance 

 

Before we discuss the details of the fault-tolerant behaviour exhibited by the 

runtime infrastructure, it is important to specify what module possess the 

fault-tolerant behaviour, the application or the runtime infrastructure and 

what faults we will address. The fault tolerance discussed in this sub-section 

is exhibited by the runtime infrastructure. Secondly, the faults may occur 

because a MPJ daemon may die because of a bug in the code or a hardware 
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failure. Given that a fault occurs and has been detected by the master, which 

then takes preventive measures and marks this particular daemon as faulty. 

This information is sent back to the user who may manually fix the problem. 

The issue of correcting the fault is out of scope of this infrastructure.  

 

7.2.4 Application Fault-Tolerance 

 

HPC is currently moving towards clusters having thousands of the 

processors. One of the current advances is the IBM Blue Gene that will 

contain 65,536 processors when fully functional. In such a cluster, hardware 

and software failures will be frequent. Thus, it is essential for future parallel 

application infrastructure to exhibit fault tolerance. We intend to provide 

support for process migration to tackle this problem. Java is unique in this 

respect from conventional languages because it is possible to track the 

program counter, save the state of the process and migrate it to other machine 

and resume execution, which is difficult in traditional languages. Such 

process migration has been achieved in [55]. In addition, this allows 

avoidance of overheads introduced by writing the checkpoints even in the 

failure free execution. Al Geist et al [90] note that checkpoint and restart may 

not be a practical option for these large clusters as its cost is more than the 

time between the failures. For all the failures that can be detected at the 

software level, we believe that the application programmers can avoid the 

overhead of checkpoint and restart the applications by using process 

migration at the application level. 

 

7.2.5 Conclusions 

 

In this report, we have discussed our early experiences with an 

implementation of a Java messaging system called MPJ. MPJ uses the device 
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drivers in similar fashion to the communication devices used in MPICH. In 

this report we discussed the implementation of mpjdev, the device driver 

based on the Java NIO package. We have evaluated the performance of 

mpjdev and found it comparable to the native mpjdev, a device driver that 

uses the underlying native MPI library. We have implemented point-to-point 

communications based on the mpjdev and evaluated it against mpiJava and 

MPICH. We have found the performance to be better than mpiJava and close 

to MPICH. This shows that a Java messaging system built on NIO can 

perform as well as the MPI implementations developed in the traditional 

languages and better than the Java messaging systems that use JNI. We are 

currently implementing collective communications on top of point-to-point 

layer. To support the execution of parallel processes on remote hosts, we have 

implemented a runtime infrastructure. We intend extend the runtime 

infrastructure to allow application developers debug, profile and monitor 

their parallel applications.  
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