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Abstract. Java is emerging as a popular platform for scientific and
engineering simulations. Its success can be attributed to its portable
nature, good performance, and inherent support for security, threads,
objects, and visualisation (graphics). In this paper, we present a message
passing system called MPJ, which is an implementation of MPI in pure
Java. MPJ supports the parallelisation of large-scale Java simulations,
on distributed and parallel systems.

1 Introduction

Java is emerging as a popular platform for scientific and engineering simula-
tions. Its “write once, run anywhere” philosophy allows Java applications to be
executed on almost all popular platforms. Being an object oriented language,
it supports polymorphism, inheritance, and so on, which are natural to rep-
resent real-world objects in simulations. Recent improvements in JIT (Just In
Time) compilers, which translate bytecode into the native machine code at run-
time, have improved the performance of Java applications. Our earlier study
[1] showed that networked Java applications can compete with the performance
of their C counterparts. Also, it supports multi-threading and provides simple
primitives like wait() and notify() that can be used for synchronised access
to shared resources. More recently, the JDK (Java Development Kit) has been
extended to provide semaphores and atomic variables. The standard JDK con-
tains packages like javax.swing, java.awt, and java.awt.event, which facilitate the
programming of visualisation tools for computer simulations. There also exists
an extension API, Java 3D which can be used to build 3D visualisations.

Security is an important concern for Internet-enabled applications — espe-
cially in the context of “The Grid”. The JDK comes with three APIs that form
the basis of security. JCE (Java Cryptography Extension) allows public and
private key generation. JAAS (Java Authentication and Authorization Service)
provide controlled access to JVM resources. Lastly, JSSE (Java Secure Socket
Extension) ensures secure Internet communications based on encrypted links
between two parties.

Exploitation of Java for simulation projects has been ongoing for some years.
Fox and Furmanski [4] in one of the earlier works in this area identified the po-
tential of Java. The authors argue that in terms of low-level parallelism, Java’s
role is to provide wrappers to the native MPI implementations. JWarp [2] is a



Java library for discrete-event parallel simulations, which builds its own commu-
nication infrastructure based on Java Remote Method Invocation (RMI). Teo
et al [15] discuss a discrete event simulation tool based on conservative algo-
rithms; this system uses JavaSpaces for communications, which is an abstrac-
tion of distributed shared memory. MONARC [10] is a simulation framework for
large scale computing resources. It has been deployed on an inter-continental
testbed to verify simulation results with some success. CartaBlanca [14], from
Los Alamos National Lab, is a general purpose non-linear solver environment for
physics computations on non-linear grids. It employs an object-oriented compo-
nent design, and is pure Java. These projects suggest that Java has already made
its mark on a range of projects involved in parallel simulations.

We note that most of these tools use RMI for communication. One project
uses Jini as the communication medium, which in turn uses RMI. In general,
middleware technologies like RMI are used for Internet communications, but
there is a need for an efficient MPI like communications library that can be
used for communications in Java based parallel applications. In this paper, we
present MPJ, which is an MPI (Message Passing Interface) [9] implementation
written in pure Java. MPJ provides a high-level communication library and
runtime infrastructure that can be used to develop and execute parallel Java
simulations.

2 Motivation and Aims

There have been various efforts over the last decade to develop a Java messaging
system based on the MPI standard. These systems typically follow one of three
approaches: use a JNI (Java Native Interface) to interact with a underlying MPI;
implement Java messaging from scratch using the likes of RMI; or implement
communications on lower-level Java Sockets API.

A drawback of the first approach (using JNI) is that it does not comply with
the “write once run anywhere” philosophy of Java—also, there are some perfor-
mance overhead in JNI, especially for large messages, due to copying of the data
from the JVM heap onto the system buffer [16]. On the other hand, JNI has
the advantage that it allows Java to access specialised communication hardware
like Myrinet or Infiniband. The second approach, that uses RMI, is not really
appropriate as the RMI package is designed for client-server interaction rather
than message passing between peers. The use of low-level “pure” Java commu-
nications based on Java sockets is the third approach. Our initial benchmarks
of the Java New I/O device [1] demonstrate that it is possible to achieve perfor-
mance close to C implementations of the MPI on Fast Ethernet. However, with
this approach it is not possible to take advantage of specialised hardware.

Experience gained with these implementations suggests that there is no “one
size fits all” approach. The reason for this is that applications implemented
on top of Java messaging systems can have different requirements. For some,
the main concern could be portability, while for others high-bandwidth and
low-latency could be the most important requirement. Portability and high-
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performance are often contradictory requirements. High performance can be
achieved by making use of the specialised communication hardware, but only
at the cost of compromising portability that Java offers. The challenging issue
is how to manage these contradictory requirements.

To address this issue, we are implementing Message Passing in Java (MPJ)
[3] following a layered architecture based on an idea of device drivers. The idea is
analogous to UNIX device drivers. We are implementing a Java NIO (New I/O)
[13] based device, a shared memory device, a GM [12] device, and a native MPI
device. The ability to swap devices at runtime helps mitigate the contradictory
requirements of the applications. In addition, we are implementing a runtime
system that bootstraps MPJ processes over a collection of machines connected
by a network. Though the runtime system is not part of the MPI specifications,
it is an essential element of MPJ if we wish to execute processes across various
platforms.

3 MPJ design

MPJ has a layered design to allow incremental development, and provide the
capability to update and swap layers in or out as needed. Figure 1 shows a
layered view of the messaging system that shows MPJ high and base level, MPJ

device level, and xdev level.
The high and base level rely on the MPJ device [8] and the xdev level for ac-

tual communications and interaction with the underlying networking hardware.
The API for MPJ is based on the Java bindings defined in [3].
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public static Device newInstance(String dev)
public ProcessID[] init(String[] args)
public ProcessID id()
public void finish()
public mpjdev.Request isend(mpjbuf.Buffer buf, ProcessID destID, int tag, int context)
public void send(mpjbuf.Buffer buf, ProcessID destID, int tag, int context)
public mpjdev.Request issend(mpjbuf.Buffer buf, ProcessID destID, int tag, int context)
public void ssend(mpjbuf.Buffer buf, ProcessID destID, int tag, int context)
public mpjdev.Status recv(mpjbuf.Buffer buf, ProcessID srcID, int tag, int context)
public mpjdev.Request irecv(mpjbuf.Buffer buf, ProcessID srcID, int tag, int context,

mpjdev.Status status)
public mpjdev.Status probe(ProcessID srcID, int tag, int context)
public mpjdev.Status iprobe(ProcessID srcID, int tag, int context)

Table 1. The xdev API

We envisage two implementations of the MPJ Device level. The first im-
plementation provides JNI wrappers to the native MPI implementations. The
second implementation uses the lower level device called xdev to provide access
to Java sockets, shared memory, or specialized communication libraries. xdev is
not needed by wrapper implementation because native MPI is responsible for
selecting and switching different communication protocols.

The design aim for this API is to minimize the code written for xdev, so that
new protocols can be written quickly and with less effort. Figure 1 also shows
three implementations of xdev. smpdev is the shared memory device for MPJ,
niodev is based on the Java NIO, whereas; gmdev provides JNI wrappers to the
GM communications library. For the first time, we present the API for xdev in
Table 1.

4 MPJ implementation

One of the fundamental differences between Java and C is the lack of pointers
in Java. Using C, it is possible to use void * to point to any basic datatype
and/or structures. This is an important characteristic, which forms the basis
for efficient messaging. Thus, the first step in developing MPJ was to develop a
buffering API that can be used to store all Java basic datatypes and objects. A
reference to this buffer can be passed to the lower level communication devices,
which transfers or copies the bytes to the destination.

4.1 MPJ buffering API

The derived datatypes and explicit packing/unpacking for datatypes is achieved
through mpjbuf (MPJ buffering API), which supports methods like write/read,
gather/scatter, and strided-gather/strided-scatter. A buffer object con-
sists of one or more sections that may contain different datatypes. There are
two primary sections for a buffer; the static section of the buffer contains Java
primitive datatypes, whereas; the dynamic section of the buffer contains Java
objects. More datails about mpjbuf API can be found in [1].
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4.2 Point to point communications

MPJ provides blocking and non-blocking point-to-point communications that
could be used to send arrays of basic Java datatypes as well as objects. Also, MPJ
provides four modes of send, which have been defined in the MPI specification
document.

4.3 Communicators, groups, and contexts

MPI provides higher level abstractions to create parallel libraries, which include
communicators, groups, and contexts. Communicators along with groups provide
process naming; each process in MPI is identified by its rank. The context, which
is an attribute of a communicator provides a safe communication universe—it
can be thought of an additional tag on the messages. Also, we have implemented
collective communications on top of point-to-point communications, which are
useful in writing parallel applications.

4.4 The communication protocols

Implementations of xdev device encapsulate various communication protocols.
Currently, niodev, which is an implementation of xdev using Java NIO imple-
ments two communication protocols. We discuss each of them briefly here.

The eager-send protocol is used by niodev for communicating small message,
typically less than 128 Kbytes. This protocol works on the assumption that the
receiver has got an unlimited device level memory where it can store messages.
There is no exchange of control messages before doing the actual data trans-
mission, thus minimizing the overhead of control messages that may dominate
the total communication time of small messages. Whenever a send method is
called, the sender writes the message data into the socket channel assuming that
the receiver will handle it. At the receiving side, there can be more than one
scenario, depending on whether a matching receive method is posted by the user
or not. If a matching receive method is posted, the message is copied onto the
user specified memory. However, if a matching receive is not posted, then the
message is stored in a temporary buffer. Later, when the receive is posted, it
copies the message from temporary message to the user specified memory

The rendezvous protocol is used for large messages, typically greater than 128
Kbytes. There is an exchange of messages between the sender and the receiver
before the actual transmission of the data payload. The overhead of this exchange
of messages is negligible in terms of the overall communication cost of large
messages.

4.5 The runtime infrastructure

MPJ relies on a runtime system that is used to bootstrap MPJ processes over
a collection of computers. The runtime consists of starter and daemon modules
that execute as the native OS service by using Java Service Wrapper [6] project.
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Fig. 2. A comparison of transfer time of MPJ with MPICH, LAM/MPI, and mpiJava

The runtime does not assume a shared file system, and uses dynamic class loading
and the reflection API to load the necessary JAR (Java Archive) files and start
the execution.

5 Preliminary performance evaluation

This section presents a ping-pong comparison of MPJ with other popular messag-
ing libraries. The tests were conducted on two compute nodes of the DSG cluster
“StarBug”, each with a Dual Xeon (Prestonia) processor with clock speed of 2.8
GHz running Debian GNU/Linux (Kernel 2.4.30). These nodes were connected
by Fast Ethernet.

Figure 2 shows plots of the transfer time comparison between MPJ, mpiJava
[11], MPICH [5], and LAM/MPI [7]. We define latency as, “the time to to transfer
one byte message”. The latency of LAM, MPICH, mpiJava, and MPJ is 125, 125,
127, and 320 s respectively. The reason for higher latency of MPJ is that currently
the sender writes the control message and the data in two separate writes. Also,
the receiver first receives the control message followed by the actual data followed
by the data receive operation.

Figure 3 indicates that LAM and MPICH almost achieve 90% of the avail-
able bandwidth, which is the theoretical maximum on Fast Ethernet. mpiJava
acheives 84 Mbps; as a result of the JNI overhead. This overhead appears mainly
because of an additional copying of the data from the JVM onto the native OS
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buffer. This overhead becomes much more significant for large messages. More
details about the JNI overhead can be found in [16]. Lastly, MPJ achieves almost
80 Mbps, which is 80% of the available bandwidth. The reason for 10% overhead
is the creation time of the buffer for large messages. Whenever a Send()/Recv()
is called at the MPJ level, it creates a new mpjbuf.Buffer object that holds
the data. The creation cost of this buffer is almost 10% of the total transmission
time for large messages. We plan to use “buffer pools” to avoid the overhead of
creating a buffer for each Send()/Recv() method.

6 Conclusion

In this paper, we have presented MPJ, which is an implementation of MPI in
pure Java. As part of MPJ, we have developed a Java NIO based communica-
tion device. Also, high and base level API has been implemented. Our design
provides the capability of swapping in or out different devices, using a pluggable
architecture. Such a design allows the applications to choose the communication
protocol that best suits their needs. To demonstrate the flexibility of our design,
we are also developing gmdev, smpdev, and a native MPI-2 device. With native
MPI device, it will also be possible to access advanced MPI features of the na-
tive implementation. We believe that MPJ provides a tool that could be used to
parallelise Java simulations.
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