2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing

An MPI-10O Compliant Java based Parallel I/O Library

Ammar Ahmad Awan', Muhammad Bilal Amin', Shujaat Hussain', Aamir Shafi?, Sungyoung Lee'

'Department of Computer Engineering, Kyung Hee University, South Korea
{ammar, bilal, shujaat.hussain, sylee}@oslab.khu.ac.kr

2SEECS, National University of Sciences and Technology, Pakistan
aamir.shafi@seecs.edu.pk

Abstract— MPI provides high performance parallel file access
API called MPI-IO. ROMIO library implements MPI-IO
specifications thus providing this facility to C and Fortran
programmers. Similarly, object-oriented languages such as
Java and C# have adapted MPI specifications and their
implementations provide HPC facility to its programmers.
These implementations, however, lack parallel file access
capability which is very important for large-scale parallel
applications. In this paper, we propose a Java based parallel
file access API called MPJ-IO and describe its reference
implementation. We describe design details and performance
evaluation of this implementation. We use JNI calls in our
code to utilize functions from ROMIO library. In addition, we
highlight the reasons for using JNI calls in our code.

Keywords--Parallel I/0 in Java; mpiJava; MPI-1/0; ROMIO

L INTRODUCTION

Java is a well-known and widely used programming
language because of its inherent features like multi-
threading, platform independence, automatic garbage
collection and dynamic type detection. Java has been
adopted by the HPC community - an area which is largely
dominated by C and Fortran - as an alternate language. Since
Java’s inception, there has been a growing interest to develop
messaging middleware for Java language inspired by
Message passing interface (MPI) libraries such as MPICH2
[1] and OpenMPI [2]. This led to the formation of Java
Grande Forum and hence the first adaptation of MPI
standard in Java called mpiJava 12 API [3].
Implementations of the mpiJava 1.2 API include, mpiJava
(the software from HPJava group), F-MPJ, MPJ/Ibis and
MPJ Express. We note that mpiJava (the software) is a native
implementation of mpiJaval.2 API and is not to be confused
with mpiJava 1.2 API itself.

The primary focus of prior research has been to prove
that Java HPC implementations are suitable for developing
real-world scientific applications. Our focus, however, is to
enable parallel file access facility for these Java HPC
libraries and provide a reasonable case by first developing an
API which adapts the MPI-IO API [4] and then providing a
reference implementation for this API. In this paper, first we
describe how we have modeled the MPJ-IO API. Second, we
describe two possible approaches for implementing this API.
Third, we explain one of them in detail and provide its
design and implementation details. In addition, we highlight
the reasons for choosing the selected approach.

978-0-7695-4996-5/13 $26.00 © 2013 IEEE
DOI 10.1109/CCGrid.2013.29

174

II. PROPOSED MPJ-10 API

The MPJ-IO API has been developed to guide the
implementation experts take advantage of a standard API
and implement the parallel file access facility for Java HPC
libraries in a uniform fashion. The API is an adapted version
of the MPI-IO API and considers the object-oriented nature
of Java language. A full explanation of this API is beyond
the scope of this paper but a draft version can be reviewed
for better understanding'.

III.

There are two approaches to implement the MPJ-IO API;
first is to implement the API purely in Java language and
second is to write Java Native Interface (JNI) wrappers to
the ROMIO [5] library. ROMIO is a popular and most
widely used MPI-IO implementation. We call the first
approach as pure Java approach and second as wrapper
approach.

REFERENCE IMPLEMENTATION

Programmers can use MPJ-10 calls

Java Application inside their existing Java codes

MPJ-I0
Implementation

MPJ-10 calls then use the JNI
native code which in turncalls
MPI-10 routines from the ROMIO

ROMIO Library |ibl'a.|'y
ADIO is the internal layerof
ADIO Layer ROMIO which deals withvarious

]
L
i parallel file systems

<PV Fsa Osher parallel
file systems

The Implementation Stack for MPJ-IO API

Figure 1.

We first investigated the possibility of developing a pure
Java implementation. We started with a performance
evaluation of Java NIO based approaches for parallel file
I/O in [6]. We faced two issues during the development of
pure Java approach. First issue was the inconsistent
performance of our pure Java implementation prototype
against ROMIO. Second issue stems from the complexity of
the parallel file system layer in the I/O stack - shown in
Figure 1 - that poses a unique challenge for a pure Java
implementation. The challenge is that most parallel file
systems have a C/C++ interface which forces the developers

! Draft available from : http://hpc.seecs.edu.pk/~ammar/

IEEE
computer
pSOC|ety

to first develop a JNI wrapper for each of them and then
implement their parallel I/O API on top of it. This difficulty
of implementation may render the pure Java approach
almost useless but we are not concluding this at the
moment. This will be investigated in the extension of this
work.

We have developed the JNI wrapper approach using the
widely accepted mpiJava software. We note that it is
possible to implement the wrappers as a stand-alone library
as well. The mpiJava software currently works on 32-bit
platforms only but we plan to port it to 64-bit platforms in
future. A notable benefit of JNI wrapper implementation is
that it can be adopted by the HPC community easily
compared to the pure Java approach. We note that HPC
community easily embraces codes that are built on top of
well-known implementations with proven performance [7].

File
ssues >> | handle :long
infor Info FileView
myComm : Intracomm type - Datalype
J— int write) filetype: Datatype
Comm o | intwritedt() cchasass | disp: Offset
int read() ’_, datarep: String
int readAt() N N N
void setConsistency() void setView(view)
int getConsistency() FileView getView(i
<< implements >»
Intracomm Py
e L]
id : lang
name : String << has & >> << has & > RDRW: int_
rank : int RODONLY: int
long getHandle() Validator Info SEQ: Int
handle : long info: Info
bool isValid() void setinfa()

Figure 2. Class Diagram for the Wrapper Approach

The design of our wrapper implementation closely
follows the mpiJava software. We modified some existing
classes (Intracomm and MPT) in mpiJava and added some
new MPJ-10 specific classes to it. The class diagram for
wrapper approach in Figure 2 illustrates the interaction of
the new File, FileView, FileMode and Info classes with
the existing Intracomm and comm classes. The methods’
signatures for each of the classes have been explained in the
draft of MPJ-IO API. Methods of File and other classes call
native methods via JNI. The JNI code receives data from the
Java layer, modifies and adjusts data-types and calls the
respective C functions from ROMIO library. The methods
for writing and reading files based on implicit offsets are
shown below.

public Status read(Object buf, int bufOffset,
int count, Datatype datatype) {
// calls the native method here

}

public Status write(Object buf, int bufOffset,
int count, Datatype datatype) {
// calls the native method here
}
Our preliminary performance evaluation suggests a
minimum 2x overhead for the JNI wrappers. We conducted

our tests on a two-node cluster configured with PVFS2
parallel file system on Ethernet connection. We wrote a
Perf.java file following the perf.c file from ROMIO. The
resulting I/O bandwidth for the Java code shows 2X slower
performance than its C counterpart. As our wrapper
implementation is a work-in-progress, we are currently
investigating performance optimizations to reduce this
overhead. An extensive evaluation is also under progress.

IV. RELATED WORK

Parallel Java (PJ) library has been recently updated with
support for performing parallel I/O operations using the
system called Parallel Datastore System (PDS) [8].

Software called jExpand (Java Expandable Parallel File
System) [9] is another library for high-performance Java
computing in heterogeneous distributed environments.

A large body of related works exists but majority of them
either lack MPI-IO compliance or they are un-available for
download.

V. CONCLUSIONS AND FUTURE WORK

We proposed a parallel I/O API for the Java language
inspired by MPI-IO API. We explored two approaches to
implement this API and presented the second one called
wrapper approach in detail. We presented the reasons for
selecting the wrapper approach and highlighted its
architecture and design. We also briefly mention about the
performance of wrapper implementation on a two node
cluster that uses PVFS2 parallel file system over Ethernet.

ACKNOWLEDGMENT

This research was supported by the MKE Korea, under
the ITRC support program supervised by the NIPA (NIPA-
2012-(H0301-12-2001)) and a grant from NIPA in 2013
(Global IT Talents Program).

REFERENCES

[1] MPICH2 Project, http://www.mcs.anl.gov/research/projects/mpich2/
[2] OpenMPI Project, http://www.open-mpi.org/

[3] Carpenter, Bryan; Fox, Geoffrey; Ko, Sung-Hoon; and Lim, Sang,
"mpiJava 1.2: API Specification" (1999). Northeast Parallel
Architecture Center. Paper 66. http://surface.syr.edu/npac/66

[4] William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2:
Advanced Features of the Message-Passing Interface. MIT Press,
Cambridge, MA, 1999.

[S] ROMIO: A High-Performance, Portable MPI-IO Implementation,
http://www.mcs.anl.gov/research/projects/romio/

[6] Ammar Ahmad Awan et al, "Towards Efficient Support for Parallel
/0 in Java HPC", The Thirteenth International Conference on
Parallel and Distributed Computing, Applications and Technologies
(PDCAT2012), Bejing, China, December 14-16, 2012.

[7]1 Basili, V.R et al. , "Understanding the High-Performance-Computing
Community: A Software Engineer's Perspective," Software, IEEE ,
vol.25, no.4, pp.29-36, July-Aug. 2008, doi: 10.1109/MS.2008.103

[8] Omonbek Salaev, Parallel Datastore System for Parallel Java, A
Capstone Project Final Report, January 2010

[9] Jose M. Perez et al, "High performance Java input/output for
heterogeneous distributed computing," Proc. 10th IEEE Symp. on
Computers and Communications (ISCC 2005), June 2005, pp. 969-
974

