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Abstract

MPJ Express is a thread-safe Java messaging library that provides a full implementation

of the mpiJava 1.2 API specification. This specification defines a MPI-like bindings for the

Java language. We have implemented two communication devices as part of our library, the

first, called niodev is based on the Java New I/O package and the second, called mxdev is

based on the Myrinet eXpress library. MPJ Express comes with an experimental runtime,

which allows portable bootstrapping of Java Virtual Machines across a cluster or network of

computers. In this paper we describe the implementation of MPJ Express. Also, we present a

qualitative and quantitative comparison against various other C and Java messaging systems.

A beta version of MPJ Express was released in September 2005.

I. Introduction

In this paper, we discuss MPJ Express (MPJE), a production quality implementation of

MPI-like bindings for Java. A priority in implementing MPJ Express was to maintain com-

patibility with Java threads. The current trend towards SMP (Symmetric Multi-Processor)

clusters underscores the importance of thread-safe HPC libraries. Using a thread-safe com-

munication library to program such clusters is an alternative to traditional approaches like

hybrid MPI and OpenMP code, or using shared memory devices in the MPI libraries. Java is

one of the few mainstream programming languages that is multi-threaded by design, and this

makes it an attractive language for programming SMP clusters, provided a thread-safe com-

munication library is available. A focus of this paper is therefore the thread-safety of MPJ

Express. Currently, we have implemented two thread-safe communication devices: niodev

based on Java NIO (New I/O)[13], and mxdev based on the Myrinet eXpress(MX) library

[12].
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Soon after its release in 1996, Java became one of the “mainstream” programming lan-

guages of the software industry. It did not take long for researchers to suggest that it might

also make a good option for high performance scientific computing. As a response to the

appearance of several prototype MPI-like systems, the Message-Passing Working Group of

the Java Grande Forum was formed in late 1998. This working group came up with an initial

draft for a common messaging API, which was distributed at the Supercomputing conference

in 1998. Since then, two APIs namely mpiJava 1.2 [5] and MPJ [6] have been proposed.

The main difference between these two APIs lies in the naming conventions of variables and

functions.

There have been various implementations of Java messaging systems for HPC over the

last decade. These systems typically follow one of three approaches: use JNI (Java Native

Interface) [7] to interact with an underlying MPI [10] library; implement a Java messaging

system from scratch using the likes of RMI [14]; or realize communications via a lower-level

Java sockets API. Experience gained with these implementations suggests that there does

not exist a universal approach that satisfies the conflicting requirements of end users. Using

100% pure Java ensures portability, but it might not provide the most efficient solution,

especially in the presence of commodity high-performance hardware. It is important to

address these contradictory requirements of portability and high performance in the design

of Java messaging systems. To address this we have introduced a pluggable architecture [2],

that adds a new device layer xdev below an already existing device layer mpjdev [9].

Section II presents related work. Section III recaps MPJE design, followed by a discus-

sion on implementation in section IV. Section V evaluates the performance of MPJE. We

conclude and discuss future work in Section VI.

II. Related Work

There have been various efforts over the last decade to develop a Java messaging system.

Most of these projects were prototype implementations, thus their source-code is not available
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and they are not maintained anymore. To our knowledge, only mpiJava, MPJ/Ibis, and MPJ

Express are actively developed and maintained.

mpiJava [11] is a Java messaging system that uses JNI to interact with the underlying

native MPI library. This project started in 1997 at NPAC in Syracuse University. mpiJava

has been perhaps the most successful Java HPC messaging system, in terms of uptake by

the community.

The mpiJava API is currently in version 1.2, although there are plans to move to the

MPJ API in the future. The mpiJava library is not thread-safe, partly because it depends

on an underlying native MPI library. Even if the native MPI library was thread-safe, some

additional work would be needed to make the mpiJava wrappers thread-safe. mpiJava relies

on native MPI’s bootstrapping mechanism to start Java processes.

MPJ/Ibis [4] is an implementation of the MPJ API specification on top of Ibis [17]. The

design philosophy of Ibis is similar to MPJ Express; it is possible to use 100% pure Java

communication or use special HPC hardware like Myrinet. There are two pure Java devices

in Ibis. The first called TCPIbis provides communication using the traditional java.io

package. The second called NIOIbis uses the Java NIO package. Although TCPIbis and

NIOIbis provide blocking and non-blocking communication at the device level, the higher-

levels only use blocking versions of these methods. The communication devices used by

MPJ/Ibis are not thread-safe. This library relies on scripts that use SSH for bootstrap-

ping. Also, MPJ/Ibis does not fully implement the higher-level features of MPI like derived

datatypes (apart from contiguous datatype), virtual topologies, and inter-communicators.

One fundamental difference between MPJ Express and MPJ/Ibis is mpjbuf, our buffering

API [3]. In MPJ Express, the idea is to pack message onto a direct byte buffer and use these

for communication. At the receiver side, the messages are unpacked from direct byte buffers

onto user-defined primitive type arrays. This packing and unpacking poses some overhead

for pure Java devices in MPJ Express, which is avoided in MPJ/Ibis pure Java devices. But

this buffering API makes it possible to avoid JNI overheads, whereas the JNI devices for

3



The MPJ point to point communications (Base level)


The MPJ collective Communications (High level)


The MPJ Device (mpjdev) layer


The MPJ API


The OS and the hardware


JNI
 Java NIO


Java Virtual Machine (JVM)


Native MPI
 mxdev
 niodev


The xdev layer


Pure Java mpjdev
Native mpjdev


Fig. 1. MPJ Express Design

MPJ/Ibis cannot avoid data copying because they do not use direct byte buffers.

The presence of three (MPJE, mpiJava, and MPJ/Ibis) Java messaging systems shows

a sustained interest in Java for HPC. All of these libraries are fairly stable and are publicly

available along with their source-code.

III. MPJ Express Design

MPJE has a layered design that allows incremental development, and provides the ca-

pability to update and swap layers in or out as needed. Figure 1 is a layered view of the

messaging system that shows MPJ Express levels: high-level, base-level, mpjdev, and xdev.

The high and base level rely on the mpjdev and xdev levels for actual communications,

and interaction with the underlying networking hardware.
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We envisage two implementations of the mpjdev level. The first implementation will

provides JNI wrappers to native MPI implementations. It would also be possible to use

higher-level features of native MPI library, instead of relying on the pure Java ones im-

plemented at top levels of the design. The second implementation will use the lower level

device called xdev to provide access to Java sockets or specialized communication libraries.

xdev is not needed by the wrapper implementation because the native MPI is responsible for

selecting and switching between the different communication protocols.

Figure 1 shows the two implementations of xdev. mxdev is the device for interconnect

using the Myrinet eXpress (MX) library and niodev is based on Java NIO.

A. xdev API

The aim of this device layer is to provide the means to flexibly swap communication

protocols. Also, we aim to keep the API simple and small, to minimize the overall devel-

opment time of devices. The reason for introducing a new device layer is that mpjdev deals

with ranks for MPI processes. This results in management of communicators and groups at

mpjdev layer. Also, it is necessary to provide wrappers to native MPI’s higher-level features.

This essentially means that xdev does not deal with the higher level abstractions of MPI, like

groups, communicators, and contexts. It only focuses on providing communication methods.

We present the API of the xdev device layer in Figure 2.

The peek() method returns the most recently completed Request object. The idea

is borrowed from the Myrinet eXpress library. This method can be used to implement

Waitany() at the higher-level. We explain this in detail in Section IV-E.1.

IV. MPJ Express Implementation

In this section, we will discuss the implementation of the various MPI features in MPJ

Express.
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package xdev ;
public abstract class Device {
public static Device newInstance(String dev) throws XDevException {

.. initialize the appropriate implementation of xdev ..
}
public abstract ProcessID[] init(String[] args) throws XDevException;
public abstract int getSendOverhead() ;
public abstract int getRecvOverhead() ;
public abstract ProcessID id();
public abstract void finish() throws XDevException;
public abstract mpjdev.Request isend(mpjbuf.Buffer buf, ProcessID destID,

int tag, int context) throws XDevException;
public abstract void send(mpjbuf.Buffer buf, ProcessID destID,

int tag, int context) throws XDevException;
public abstract mpjdev.Request issend(mpjbuf.Buffer buf, ProcessID destID,

int tag, int context) throws XDevException;
public abstract void ssend(mpjbuf.Buffer buf, ProcessID destID,

int tag, int context) throws XDevException;
public abstract mpjdev.Status recv(mpjbuf.Buffer buf, ProcessID srcID,

int tag, int context) throws XDevException;
public abstract mpjdev.Status probe(ProcessID srcID, int tag,

int context) throws XDevException;
public abstract mpjdev.Status iprobe(ProcessID srcID, int tag,

int context) throws XDevException;
public abstract mpjdev.Request peek() throws XDevException;

}

Fig. 2. The xdev API

A. Point-to-Point Communication

The send and receive operations form the basic point to point communication mecha-

nism. It is possible to use the blocking and non-blocking versions of these operations. In

addition, the MPI specification document defines four modes of send method, namely normal,

synchronous, ready, and buffered. In niodev, we have implemented these four modes using

two communication protocols: eager send and rendezvous protocol. These protocols need

not be implemented in the case of mxdev because the MX library has already implemented

the communication protocols internally. We present the pseudocode for these communica-

tion protocols implemented for niodev in Section IV-A.1 and IV-A.2—they might serve as a

blueprint for developing other thread-safe devices.

In niodev, each process connects to every other process with two NIO channels. The

reason for two channels is that we use blocking mode for writing messages and non-blocking

mode for reading messages, and the Java NIO API does not allow using both blocking and
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isend:
lock ‘dest’ channel
send the data
unlock ‘dest’ channel
return a non-pending send request object

Fig. 3. Pseudocode for isend method (eager protocol)

non-blocking modes on a single channel. There is a separate lock (per destination) associated

with each write channel, which means every thread that tries to write a message first acquires

the associated lock. No lock is required for reading messages because only one thread receives

messages. We call this thread the input-handler in the discussion below. It is often referred

as a progress engine in related literature. This thread makes use of select() to process

events associated with registered channels.

A.1 The niodev Eager Send Protocol

The eager send protocol is normally used for the communication of small messages,

typically less than 128 Kbytes when using TCP/IP. This protocol works on the assumption

that the receiver has got an unlimited device level memory where it can store messages. There

is no exchange of control messages before the actual data transmission. This minimizes the

overhead of control messages that may dominate the total communication time for small

messages.

Whenever a send method is called, the sender writes the message data into the channel

assuming that the receiver will handle it as shown in the pseudocode in Figure 3. At the

receiving side, there can be more than one scenario when the input-handler thread receives

a message, depending on whether a matching receive method is already posted by the user

or not. If a matching receive method has already been posted, the message is copied onto

the memory specified by the user. If a matching receive has not yet been posted, then the

message is stored in a temporary buffer, and copied to the user specified memory when

subsequently the user calls the matching receive method. The pseudocode for the receiver

can be seen in Figure 4 and Figure 5.
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irecv:
lock receive-communication-sets
if irecv matches some receive request in pending-recv-request-set {
copy data from input-buffer into user-buffer
remove non-pending receive request from pending-recv-request-set

}
else {
add pending receive request to pending-recv-request-set

}
unlock receive-communication-sets
return the receive request

Fig. 4. Pseudocode for irecv method (eager protocol)

loop {
receive header
lock receive-communication-sets
if message matches a receive request in pending-recv-request-set {
remove receive request from pending-recv-request-set
unlock receive-communication-sets
receive data into user-buffer

}
else {
receive data into input-buffer
add receive request to pending-recv-request-set
unlock receive-communication-sets

}
}

Fig. 5. Pseudocode for input handler threads (eager protocol)

A.2 The niodev Rendezvous Protocol

The rendezvous protocol is used for communication of large messages, typically greater

than 128 Kbytes. There is an exchange of messages between the sender and the receiver

before the actual transmission of the data. For large enough messages, the overhead of this

exchange of messages is negligible in terms of the overall communication cost.

When the sender intends to send a message a ready-to-send control message is sent. Fig-

ure 6 shows the psuedo-code for the user thread that sends such a control message. Note that

there is a separate lock for send-communication-sets and destination channel. When a process

calls a send method it acquires two locks—the first to manipulate send-communication-sets

and the second to gain exclusive access to the destination channel. These locks are acquired

one after the another, to avoid blocking other user threads sending messages to different

destinations.
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isend:
lock send-communication-sets
add send request to pending-send-request-set
unlock send-communication-sets
lock ‘dest’ channel
send a ready-to-send message
unlock ‘dest’ channel
return pending send request

Fig. 6. Pseudocode for isend method (rendezvous protocol)

When the input-handler thread at the receiver end receives this message, it first checks

pending-recv-request-set to see if a matching receive is posted or not. If it has been posted

the input-handler thread sends back a ready-to-recv control message. The pseudocode for

this can be seen in Figure 8. If it has not been posted the user-thread that posts the receive

method is responsible for sending ready-to-recv control message as shown in Figure 7.

Back at the sender side, the input-handler thread receives a ready-to-recv message and

forks a write thread that sends the actual data to the receiver as shown in Figure 8. The

reason for forking a new thread is to avoid blocking the input-thread. Such blockage of input-

thread could result in a deadlock if two processes are simultaneously sending large messages

to each other. We opted to use blocking channels for sending data, because non-blocking

ones would add unnecessary complexity to the device.

The input-thread receives the message data in a non-blocking fashion. This ensures that

input-thread is never blocked and makes progress even if multiple messages are received si-

multaneously. If a full message is not received, then the corresponding receive request is

added to java.nio.channels.SelectionKey, which is a token for representing the registra-

tion of a channel with a selector (input-thread). When the rest of the message is received, the

pending receive request can be obtained to resume receiving of the data. The pseudocode

for the input-thread is shown in Figure 8.
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irecv:
lock receive-communication-sets
if irecv matches a receive request in pending-recv-request-set {
unlock receive-communication-sets
lock ‘src’ channel
send ‘ready-to-recv’ message
unlock ‘src’ channel

}
else {
add pending receive request to pending-recv-request-set
unlock receive-communication-sets

}
return the receive request

Fig. 7. Pseudocode for irecv method (rendezvous protocol)

A.3 mxdev Implementation

Our communication device mxdev uses JNI to communicate with the MX library. It does

not implement any communication protocols because these protocols have been internally

implemented by the MX library. An added advantage is that the communication functions

provided by MX are thread-safe.

Because our buffering API mpjbuf makes it possible to use direct byte buffers, we have

been able to avoid one of the main overhead of using JNI—copying data between the JVM

(Java Virtual Machine) and the OS.

The MX library can be initialized with the mx init() method. Once this is done, the

mx open endpoint() method is used to listen for incoming connections. Each process opens

up one endpoint, and all others connect to this endpoint using the mx connect() method.

The MX library provides non-blocking versions of standard and synchronous mode of the

send operation. Also, it provides a non-blocking version of the receive operation. The

signature of mx isend() is:

mx_return_t mx_isend(mx_endpoint_t endpoint, mx_segment_t *segments_list,

uint32_t segments_count, mx_endpoint_addr_t destination,

uint64_t match_send, void *context, mx_request_t *request);

The second argument to mx isend() is a pointer segments list, followed by a third

argument segments count. This means that the data sent can belong to two or more
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input handler thread:
loop {
if a channel is attached to selection key (rest of the data) {
detach ‘src’ channel from selection key
receive the data
if full data has not been received {
attach ‘src’ channel to selection key

}
}
else {
receive header
if message is a ready-to-send message {
lock receive-communication-sets
if header matches some receive request in pending-recv-request-set {

unlock receive-communication-sets
lock ‘src’ channel
send ‘ready-to-recv’ message to sender
unlock ‘src’ channel

}
else {

add pending receive request to pending-recv-request-set
unlock recv-communication-sets

}
}
if message is a ready-to-receive message {
fork a rendez-write-thread

rendez-write-thread:
lock send-communication-sets
remove a non-pending send request from pending-send-request-set
unlock send-communication-sets
lock ‘dest’ channel
send the data
unlock ‘dest’ channel

}
if message is data {
lock receive-communication-sets
remove the matching receive request from pending-recv-request-set
unlock receive-communication-sets
receive the data
if full data has not been received {

attach ‘src’ channel to selection key
}

}
}

}

Fig. 8. Pseudocode for input handler threads (rendezvous protocol)
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contiguous sections in memory. Our buffering API [3] stores primitive datatypes in a so-

called static section of the buffer, whereas the object datatypes are stored in a so-called

dynamic section. This feature of sending data from multiple contiguous segments makes it

possible to send static and dynamic sections in one mx isend() call.

B. Thread Safety

The MPI 2.0 specification introduced the notion of thread compliant MPI implementa-

tion. This document introduced four levels of thread-safety. MPI THREAD SINGLE means only

one thread executes in a MPI process. MPI THREAD FUNNELED means that the MPI process

maybe multi-threaded, but only the main thread could communicate to other processes.

MPI THREAD SERIALIZED means that multiple threads can make MPI calls but only one at a

time. MPI THREAD MULTIPLE means that multiple threads can do communication without any

restriction. The newly provided methods allow initializing the thread environment with a

requested level of thread-safety and querying for the level of thread-safety that a MPI imple-

mentation provides. There are no Java bindings for the MPI 2.0 specification document—we

plan to produce Java bindings for thread-safety related variables and methods.

MPJ Express runs with level MPI THREAD MULTIPLE by default. A MPJE process can

have multiple threads, which can communicate with other processes without any restriction.

We believe MPJ Express is the first Java HPC messaging library to support this level of

thread-safety. Only a handful of C MPI libraries support MPI THREAD MULTIPLE.

To verify our claim, we wrote multi-threaded test cases that are part of MPJ Express

test suite. These test cases start multiple threads for a single MPJE process. These threads

communicate with other process. When the message is received at the receiver, the contents

of the message are verified. Another verification test is called ProgressionTest. In this

test, one of the thread running in a multi-threaded MPJE process blocks itself and we check

if this halts the execution of other threads in the same process. This test revealed that our

approach successfully meets this criterion of multi-threaded libraries too.
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C. Derived Datatypes

Derived datatypes were introduced in the MPI specifications to allow communication of

heterogeneous and non-contiguous data. It is possible to achieve some of the same goals by

communicating Java objects, but there are concerns about the cost of object serialization—

MPJ Express relies on JDK’s default serialization.

There are four types of derived datatypes; contiguous, indexed, vector, and struct. De-

rived datatypes are important as they might simplify application development. For instance,

the vector datatype consists of elements of the same type at non-contiguous locations. Imag-

ine a 4x4 matrix stored in a float array. It is possible to send first column of this matrix using

the vector datatype, by specifying a blockLength of 1 and stride of 4 when initializing the

datatype. When the send method is called, the first column is copied to a contiguous area,

which is used for the actual send. This is made possible in MPJ Express by our buffering

API mpjbuf. More details about mpjbuf can be found in [3].

D. The Runtime System

An important component of a Java messaging system is the mechanism used for boot-

strapping MPJE processes across various platforms. A challenge here is to make the mech-

anism cope with heterogeneous platforms. If the compute-nodes are running a UNIX-based

OS, it is possible to remotely execute commands using SSH. But if the compute-nodes are

running Microsoft Windows, these utilities are not universally available. The MPJE run-

time provides a unified way of starting MPJE processes on compute-nodes irrespective of

the operating system. The runtime system consists of two modules. The daemon module

executes on compute-nodes and listens for requests to start MPJE processes. The daemon

is a Java application listening on an IP port, which starts a new JVM whenever there is a

request to execute an MPJE process. MPJ Express uses the Java Service Wrapper Project

[8] software to install daemons as a native OS service. The mpjrun module acts as a client

to the daemon module. This module may be invoked on, for example, a cluster’s head-node.
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Fig. 9. The Runtime Infrastructure

It will contact daemons, which will start MPJE processes in a new JVM.

Java allows one to run applications using class files in an open directory structure, or

bundled as a JAR file. The MPJE runtime allows the execution of MPJE applications in

either format. Users may want to load MPJE JARs and classes either remotely or locally on

the compute-nodes as shown in Figure 9. With the remote loader, it is possible to load all

classes (application and MPJE code) from the users development node as shown in Figure

9b. This is useful in scenarios when there is no shared file system and the code is constantly

being modified at the head-node. With the local loader, it is possible to load all classes

(application and MPJ Express code) from the compute-node as shown in Figure 9a. This

might be useful if there is a shared file system. As all classes are loaded locally, this might

provide better performance in comparison to remote loader.

E. Qualitative Analysis of MPJ Express

In this section, we discuss some features of MPJ Express emphasizing that we have

made an effort to ensure a production quality implementation. Due to space restrictions,

we limit our discussion to implementation of Waitany() method and Recv() using wildcard

MPI.ANY SOURCE.
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E.1 Multi-Threaded Implementation of Waitany()

A straightforward way of implementing Waitany(Request[] requests) method is to

poll over a set of requests passed as an argument. This approach is not efficient in a multi-

threaded setting because this can cause CPU starvation for any computation that might be

running in parallel.

In MPJ Express, the actual implementation of Waitany() is at the mpjdev level. At

this level, we use the peek() method provided by the xdev API. A WaitAny object has a

reference to all Request objects, which were passed as argument to Waitany(). Also, each

Request object stores a reference to WaitAny object, if a Waitany() method has been called

for this Request object. Otherwise, the WaitAny object reference in Request object is null.

The Waitany() method accepts an array of active Request objects. We call Test()

method for each element of Request objects array to check if any of them has completed.

If one of them has completed, then Waitany() would return immediately. Otherwise, a

WaitAny object is initialized and added to a static WaitanyQue object. In MPJ Express, it

is possible that multiple threads might be calling Waitany() at the same time. Thus, we

need to work out which one would call the peek() method.

Each thread that might be calling Waitany() has a unique reference to WaitAny object,

that has been added to WaitanyQue object. The WaitAny object at the front of this queue is

now responsible for calling the peek() method. Note that the peek() is a blocking method,

that returns the most recently completed Request object. All the other WaitAny objects in

different threads call WaitAny.waitfor() method.

When the peek() method called by the front WaitAny object returns a reference to most

recently completed Request object, three scenarios are possible. The first scenario is that

the returned Request object is associated with the calling WaitAny object. In this case, we

wakeup the next WaitAny object in WaitanyQue object that is now responsible for calling

the peek() method. The second scenario is that the returned Request object is associated
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with a WaitAny object in WaitanyQue object. In this case, it is removed from the queue and

the Waitany.wake() is called for it. The third and the last scenario is that no Waitany()

method has been called for the returned Request object. If the returned Request object’s

WaitAny object reference is null, then we ignore this Request object.

E.2 Implementation of Receive method for MPI.ANY SOURCE

In MPJ Express, we provide an efficient implementation for receiving messages with

MPI.ANY SOURCE. Whenever a receive method is called and the message has not already

arrived, then a receive request is added to pending-recv-request-set as shown in Figure 7.

A message can be identified uniquely using context, tag, and src. Each receive re-

quest generates four keys because it is possible to use wildcards for src and tag. The

first key is (context, tag, src), the second is (context, ANY TAG, src), the third is

(context, tag, ANY SOURCE), and the fourth is (context, ANY TAG, ANY SOURCE). The

incoming messages are matched using these keys to find the appropriate request object.

V. Performance Evaluation

In this section, we evaluate the performance of MPJ Express. Section V-A presents

a qualitative comparison, followed by the conventional transfer time and throughput com-

parisons in Sections V-B, V-C, and V-D on Fast Ethernet, Gigabit Ethernet, and Myrinet,

respectively.

We used MPJ Express (version 0.23), MPICH (version 1.2.5.2), MPJ/Ibis (version 1.2.1),

LAM/MPI (version 7.0.6), and mpiJava (version 1.2.5). We used two devices for MPJ/Ibis:

TCPIbis and NIOIbis are based on java.io and java.nio packages respectively. To differ-

entiate between the two, we have named them MPJ/Ibis(TCPIbis) and MPJ/Ibis(NIOIbis).

We also added mpjdev to our comparison to better understand the performance of MPJ

Express. MPJ Express uses mpjdev, which in turn relies on niodev on Fast and Gigabit

Ethernet and mxdev on Myrinet.

The test environment for collecting the performance results was a cluster at the DSG
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called StarBug, consisting of 8 dual Intel Xeon 2.8 GHz PCs using the Intel E7501 chipset.

The PCs were equipped with 2 Gigabytes of ECC RAM with 533 MHz Front Side Bus (FSB).

The motherboard (SuperMicro X5DPR-iG2) is equipped with 2 onboard Intel Gigabit LAN

adaptors with one 64-bit 133 MHz PCI-X slot and one 64-bit 66 MHz PCI slot. The PCs

were connected together through a 24-port Ethernet switch. The PCs were running the

Debian GNU/Linux with the 2.4.32 Linux kernel. The software used for the Intel Gigabit

adaptor was the proprietary Intel e-1000 device driver. The JDK version that has been used

for these tests for mpiJava and MPJE is Sun JDK 1.5 (Update 6). The C compiler used was

GNU GCC 3.3.5.

The transfer time and latency is calculated using a modified ping-pong benchmark.

While using conventional ping-pong benchmarks, we noticed variability in timing measure-

ments. The reason is that the network card drivers used on our cluster have 64 microseconds

network latency. The network latency of the card drivers is an attribute that determines the

polling interval for checking new messages. In our modified technique, we introduced random

delays before the receiver sends the message back to the sender. Using this approach, we

were able to negate the affect of network card latency. We omit the details of this technique

here because of space limitations, and plan to present it in a separate publication.

A. Qualitative Analysis

We presented our technique of implementing Recv() method using MPI.ANY SOURCE in

Section IV-E.2. To quantify the performance boost of this approach against other implemen-

tations, we wrote a test case with two processes. Each process calls non blocking receive with

MPI.ANY SOURCE for hundred messages at the start, does multiplication of two square

matrix (3000x3000). At the end of this computation, each process sends hundred messages

to the other process. We ran this test with MPJ Express and MPJ/Ibis for comparison. We

found out that matrix multiplication at process 0 was 11% faster when using MPJ Express.
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B. Transfer Time and Throughput Comparison on Fast Ethernet

Figure 10 and 11 shows transfer time and throughput comparison of MPJ Express against

other messaging systems.

The latency (transfer time of one byte) of the C MPI library is the lowest of all. This

is understandable because of lower latency of the C ping-pong benchmarks than their Java

counterparts. mpiJava follows C MPI library because essentially it is using the same mes-

saging mechanism. MPJ/Ibis and MPJ Express use pure Java, which is the main cause of

slightly higher latency. The latency of MPJ Express is 164 microseconds, which is higher

than MPJ/Ibis (144 microseconds for TCPIbis and 143 microseconds for NIOIbis). The

latency of mpjdev is slighter lower than MPJ Express.

The throughput achieved at 16 Mbyte message size is more than 84% of the maximum

for all systems. mpiJava achieves 84% and the difference to other messaging systems could be

attributed to additional data copying incurred by JNI. LAM/MPI, MPJ/Ibis (using TCPIbis

and NIOIbis) achieve 90%, followed by MPICH and MPJ Express. The drop at 128 Kbytes

message size for MPICH, mpiJava, and MPJ Express is due to change of communication

protocol from eager send to rendezvous.

C. Transfer Time and Throughput Comparison on Gigabit Ethernet

Most messaging libraries are not fine tuned to run on Gigabit Ethernet. This means

that understanding the performance of these libraries can be non-trivial. There are many

factors that could play a vital part in the overall performance on Gigabit Ethernet. Out of

these, socket send and receive buffer size is probably the most influential. To have a fair

comparison, we changed the default socket buffer size (send and receive) to 512 Kbytes for

all messaging libraries.

Figure 12 and 13 show transfer time and throughput comparison on Gigabit Ethernet.

The behavior is similar to Fast Ethernet—the latency values have been reduced due to a

faster network technology. The throughput comparison in Figure 13 shows that LAM/MPI,
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MPJ/Ibis (TCPIbis), and MPJ/Ibis (NIOIbis) achieve 90% of total bandwidth. MPICH,

MPJ Express, and mpiJava lag behind achieving 76%, 68%, and 60% throughput respectively.

Although mpjdev achieves 90% of bandwidth for 16 Mbyte message, MPJ Express manages

to reach 68%.

D. Transfer Time and Throughput Comparison On Myrinet

These tests were conducted on the same cluster, except we used 2 Gigabit Myrinet.

The version of Myrinet eXpress library that we used was 1.1.0. Also, we used MPICH-MX

(version 1.2.6.0.94) that runs on top of MX library.

Figure 14 and 15 show the transfer time and throughput comparison. The latency of

MPICH-MX is 4 microseconds. MPJ Express and mpiJava have latency of 23 microseconds

and 12 microseconds respectively. Throughput achieved by MPICH-MX is 1800 Mbps for

16 Mbytes. It is followed by MPJ Express that achieves 1097 Mbps for the same message

size. mpiJava achieves a maximum of 1347 Mbps for 64 Kbytes messages. After this, there

is a drop, bringing throughput down to 868 Mbps for 16 Mbytes message. mpjdev achieves
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Fig. 13. Throughput Comparison on Gigabit Ethernet

1826 Mbps for 16 Mbyte message, which is more than what MPICH-MX achieves.

MPJ/Ibis provides a device net.gm that could be used, but we were unable to use it on

our cluster. We have contacted the maintainers of MPJ/Ibis who are currently fixing the

problem. For this draft, we use latency and throughput of net.gm reported in [1], which is

42 microseconds and 1100 Mbps, respectively. Note that these performance results are for

net.gm device and not MPJ/Ibis, that would add some overhead.

E. Analysis of Transfer Time and Throughput Graphs

The main overhead in MPJ Express is the additional packing and unpacking required

at the sender and the receiver, respectively. We copy the user message onto a direct byte

buffer so that we can use NIO for pure Java device and avoid the JNI copying overhead

for proprietary hardware devices. This could be verified by noting the difference between

mpjdev and MPJ Express—there is no copying at mpjdev level. The reason for using direct

byte buffers is that in the NIO package, the send and receive operations are provided by

SocketChannel’s write() and read() methods. These methods only accept ByteBuffer
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as an argument. Another advantage of using direct byte buffer is that it is possible to avoid

the JNI copying overhead. The reason is that these direct byte buffers reside outside JVM

heap and are not copied from heap onto native OS memory. This is evident by looking at

throughput achieved by mpjdev on Myrinet—it achieves more throughput than MPICH-MX.

It is possible to avoid copying overhead in pure Java devices as shown by the performance

of MPJ/Ibis on Fast and Gigabit Ethernet. But, this can be achieved using java.io package

or using NIO in traditional java.io way. Using this approach, the message is directly

written to and read from socket’s input and output stream, respectively. The disadvantage

is that the implementation cannot avoid JNI data copying and cannot use NIO’s select()

functionality. We believe that using NIO might provide better scalability on large clusters.

VI. Conclusions and Future Work

In this paper, we have presented MPJ Express, a thread-safe implementation of a MPI-

like bindings for Java. MPJE implements all the high-level MPI features. Also, we have

implemented two communication devices. The first device, niodev, is based on the Java

NIO package, and provides portability by using 100% pure Java. We believe that using

NIO’s select() functionality can scale our device to large clusters. For example, we found

out that it is possible to post any number of non-blocking receive methods using MPJ

Express. Whereas, MPJ/Ibis, for example, fails with cannot create native threads ex-

ception while posting 650 simultaneous receive operations. The reason is that MPJ/Ibis

starts a new thread for each send or receive operation. Our other communication device

mxdev is based on the MX library and uses JNI to provide efficient communication.

We recently ported Gadget-2 [15] to Java using MPJ Express. Gadget-2 is a massively

parallel structure formation code developed at the Max Planck Institute of Astrophysics.

This code has been used in the “Millennium Simulation” [16]—the largest ever model of the

Universe. The initial performance evaluation of the Java version revealed that it can achieve

upto 70% of the original C Gadget-2’s performance.

23



MPJ Express also comes with an experimental runtime that allows bootstrapping of

Java processes. MPJ/Ibis and mpiJava do not have a runtime, which means that they rely

on non-portable scripts that use SSH for bootstrapping. It could be quite cumbersome using

these on Windows cluster or network.

We have benchmarked our system against various other messaging libraries and shown

that MPJ Express is able to achieve comparable performance to other systems. There is an

overhead associated with MPJ Express pure Java devices that can potentially be resolved

by extending the MPJ API to allow communicating data to and from ByteBuffers.

A beta version of MPJ Express was released in September, 2005 with niodev as the only

option for communication. Since then, we have received valuable feedback from users and

plan to provide a full stable release that includes mxdev in mid 2006.
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